Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T13:40:59.704Z Has data issue: false hasContentIssue false

A note on the effect of a commercial drying process on the long chain fatty acids of milk

Published online by Cambridge University Press:  01 June 2009

J. H. Moore
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
D. L. Williams
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Extract

The role of the essential fatty acids, linoleic and arachidonic acids, in human nutrition has been widely studied, particularly with respect to their possible action in preventing arterial disease in adults, e.g. Kinsell (1963). In addition, Hansen, Haggard, Boelsche, Adam & Wiese (1958) have emphasized the importance of linoleic acid in the nutrition of infants. Although milk fat contains only relatively small amounts of linoleic and arachidonic acids, the part played by milk and milk products in contributing essential fatty acids to the human diet has received considerable attention (Combes, Pratt & Wiese, 1962; Kon, 1962; Hansen et al. 1963; Garton, 1964). However, despite the initial dependence of many infants on dried milk as an exogenous source of essential fatty acids the effects of commercial drying processes on the constituents of milk fat have not been much investigated. A comparative study of the fatty acid compositions of raw and dried milk was therefore undertaken.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Combes, M., Pratt, E. L. & Wiese, H. F. (1962). Pediatrics, Springfield, 30, 136.CrossRefGoogle Scholar
Farquhar, J. W., Insull, W., Rosen, P., Stoffel, W. & Ahrens, E. H. (1959). Nutr. Rev. 17, Suppl.Google Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.Google Scholar
Garton, G. A. (1964). J. Dairy Res. 31, 201.Google Scholar
Hansen, A. E., Haggard, M. E., Boelsche, A. N., Adam, D. J. D. & Wiese, H. F. (1958). J. Nutr. 66, 565.CrossRefGoogle Scholar
Hansen, A. E., Wiese, H. F., Boelsche, A. N., Haggard, M. E., Adam, D. J. D. & Davis, H. (1963). Pediatrics, Springfield, 31, Suppl. no. 1, p. 171.CrossRefGoogle Scholar
Kinsell, L. W. (1963). In Progress in the Chemistry of Fats and Other Lipids, vol. 6, p. 137 (eds. Holman, R. T., Lundberg, W. O. & Malkin, T.). Oxford: Pergamon Press.Google Scholar
Kon, S. K. (1962). 16th Int. Dairy Congr. D, p. 613.Google Scholar
Moore, J. H. & Williams, D. L. (1963). Canad. J. Biochem. Physiol. 41, 1821.CrossRefGoogle Scholar
Moore, J. H. & Williams, D. L. (1964). Biochim. biophys. Acta, 84, 41.Google Scholar
Nelson, G. J. & Freeman, N. K. (1959). J. biol. Chem. 234, 1375.CrossRefGoogle Scholar
Pol, G. & Groot, E. H. (1960). Ned. melk- en Zuiveltijdschr. 14, 158.Google Scholar
Stoffel, W., Chu, F. & Ahrens, E. H. (1959). Analyt. Chem. 31, 307.CrossRefGoogle Scholar