Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:11:32.430Z Has data issue: false hasContentIssue false

The metabolism of [14C]bicarbonate by Streptococcus lactis: the synthesis of succinic acid

Published online by Cambridge University Press:  01 June 2009

Alan J. Hillier
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
G. Richard Jago
Affiliation:
Dairy Research Laboratory, Division of Food Research, CSIRO, Highett, Victoria 3190, Australia

Summary

Whole cells of Streptococcus lactis C10, when incubated with an energy source, converted fumarate to succinate and malate to lactate. Cell-free extracts of Str. lactis C10 contained fumarate reductase, but no aspartase, adenylosuccinate synthetase and lyase or argininosuccinate synthetase and lyase activity could be detected. Cells grown in the presence of [14C]bicarbonate produced labelled succinate during the synthesis of purine bases. However, the amount of succinate produced by this pathway only accounted for approximately one-sixth of the succinate produced by the cells.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

French, C. S. & Milner, H. W. (1955). Methods in Enzymology 1, 64.CrossRefGoogle Scholar
Guirard, B. M., Snell, E. E. & Williams, R. J. (1946). Archives of Biochemistry 9, 361.Google Scholar
Hillier, A. J. & Jago, G. R. (1978). Journal of Dairy Research 45, 231.CrossRefGoogle Scholar
Hillier, A. J., Rice, G. H. & Jago, G. R. (1978). Journal of Dairy Research 45, 241.CrossRefGoogle Scholar
Hurlbert, R. B. (1957). Methods in Enzymology 3, 785.CrossRefGoogle Scholar
Kitahara, K. & Katagiri, H. (1938). Bulletin of the Agricultural and Chemical Society of Japan 14, 69.Google Scholar
Kornberg, H. L. & Reeves, R. E. (1972). Biochemical Journal 126, 1241.CrossRefGoogle Scholar
London, J. & Meyer, E. Y. (1969). Journal of Bacteriology 98, 705.CrossRefGoogle Scholar
London, J. & Meyer, E. Y. (1970). Journal of Bacteriology 102, 130.CrossRefGoogle Scholar
Magasanik, B. (1962). In The Bacteria, vol. IlI, p. 295. (Eds Gunsalus, I. C. and Stanier, R. Y..) New York: Academic Press.Google Scholar
Massey, V. & Singer, T. P. (1957). Journal of Biological Chemistry 228, 263.CrossRefGoogle Scholar
McKay, L. L., Walter, L. A., Sandine, W. E. & Elliker, P. R. (1969). Journal of Bacteriology 99, 603.CrossRefGoogle Scholar
Platt, T. B. & Foster, E. M. (1958). Journal of Bacteriology 75, 453.CrossRefGoogle Scholar
Reiter, B. & Oram, J. D. (1962). Journal of Dairy Research 29, 63.Google Scholar
Seitz, E. W., Sandine, W. E., Elliker, P. R. & Day, E. A. (1963). Canadian Journal of Microbiology 9, 431.CrossRefGoogle Scholar
Vanderheiden, G. J., Fairchild, A. C. & Jago, G. R. (1970). Applied Microbiology 19, 875.CrossRefGoogle Scholar
Williamson, J. R. (1974). In Methods of Enzymatic Analysis, 2nd edn, vol. 3, p. 1616. (Ed. Bergmeyer, H. U..) New York: Academic Press.Google Scholar
Wright, D. E. (1960). Journal of General Microbiology 22, 713.CrossRefGoogle Scholar