Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T16:23:51.940Z Has data issue: false hasContentIssue false

High-melting-point triglycerides and the milk-fat globule membrane

Published online by Cambridge University Press:  01 June 2009

F. B. P. Wooding
Affiliation:
Agricultural Research Council, Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT
P. Kemp
Affiliation:
Agricultural Research Council, Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT

Summary

The initial milk-fat globule membrane (MFGM) consists of a unit membrane with a layer of dense material 10–20 nm thick on one side. Extraction of isolated initial MFGM preparations 3 times with chloroform: methanol removes 90% of the triglycerides and most of the phospholipids. This extraction has no significant effect on the width or morphology of the dense material examined subsequently in the electron microscope, although all trace of the unit membrane disappears. This indicates that the dense material is more likely to be derived from protein from the secretory cell cytoplasm than from high-melting-point triglycerides from the milk-fat globule as has previously been asserted.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M., Cheeseman, G. C. & Knight, D. J. (1972). Journal of Dairy Research 39, 409.CrossRefGoogle Scholar
Bauer, H. (1972). Journal of Dairy Science 55, 1375.CrossRefGoogle Scholar
Carroll, K. K. (1961). Nature 191, 377.CrossRefGoogle Scholar
Collin, R., Griffith, W. P., Phillips, F. L. & Skapski, A. C. (1973). Biochimica et Biophysica Acta 320, 745.CrossRefGoogle Scholar
Dowben, R. M., Brunner, J. R. & Philpott, D. E. (1967). Biochimica el Biophysica Acta 135, 1.CrossRefGoogle Scholar
Henson, A. F., Holdsworth, G. & Chandan, R. C. (1971). Journal of Dairy Science 54, 1752.CrossRefGoogle Scholar
Keenan, T. W., Morré, D. J., Olson, D. E., Yunghans, W. N. & Patton, S. (1970). Journal of Cell Biology 44, 80.CrossRefGoogle Scholar
Keenan, T. W., Olson, D. E. & Mollenhauer, H. H. (1971). Journal of Dairy Science 54, 295.CrossRefGoogle Scholar
Kobylka, D. & Carraway, K. L. (1972). Biochimica et Biophysica Acta 288, 282.CrossRefGoogle Scholar
Martel, M. B., Dubois, P. & Got, R. (1973). Biochimica et Biophysica Acta 311, 565.CrossRefGoogle Scholar
Patton, S. (1973). Journal of the American Oil Chemists' Society 50, 178.CrossRefGoogle Scholar
Shahani, K. M., Harper, W. J., Jensen, R. G., Parry, R. M. Jr & Zittle, C. A. (1973). Journal of Dairy Science 56, 531.CrossRefGoogle Scholar
Sherbon, J. W. & Dolby, R. M. (1973). Journal of Dairy Science 56, 52.CrossRefGoogle Scholar
Stewart, P. S. & Irvine, D. M. (1970). Journal of Dairy Science 53, 279.CrossRefGoogle Scholar
Thompson, M. P., Brunner, J. R., Stine, C. M. & Lindquist, K. (1961). Journal of Dairy Science 44, 1589.CrossRefGoogle Scholar
Vasić, J. & DeMan, J. M. (1966). 17th International Dairy Congress, Munich C, 167.Google Scholar
Vaskovsky, V. E. & Kostetsky, E. Y. (1968). Journal of Lipid Research 9, 396.CrossRefGoogle Scholar
Wolf, D. P. & Dugan, L. R. Jr (1964). Journal of the American Oil Chemists' Society 41, 139.CrossRefGoogle Scholar
Wooding, F. B. P. (1971 a). Journal of Cell Science 9, 805.CrossRefGoogle Scholar
Wooding, F. P. B. (1971 b). Journal of Ultrastructure Research 37, 388.CrossRefGoogle Scholar
Wooding, F. B. P. (1972). Experientia 28, 1077.CrossRefGoogle Scholar
Wooding, F. B. P., Peaker, M. & Linzell, J. L. (1970). Nature 226, 762.CrossRefGoogle Scholar