Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T18:51:23.991Z Has data issue: false hasContentIssue false

Fractionation of whole casein on hydroxyapatite. Application to a study of buffalo κ-casein

Published online by Cambridge University Press:  01 June 2009

F. Addeo
Affiliation:
Laboratoire de Recherches sur les Protéines, Institut National de la Recherche Agronomique, CRNZ, 78350-Jouy-en-Josas, France
J.-M. Chobert
Affiliation:
Laboratoire de Recherches sur les Protéines, Institut National de la Recherche Agronomique, CRNZ, 78350-Jouy-en-Josas, France
B. Ribadeau-Dumas
Affiliation:
Laboratoire de Recherches sur les Protéines, Institut National de la Recherche Agronomique, CRNZ, 78350-Jouy-en-Josas, France

Summary

When whole caseins from cow and Italian buffalo (Bubalus arnee) were fractionated by chromatography on a column of hydroxyapatite they behaved in a similar manner. κ-Casein was eluted with 5 mM phosphate buffer, pH 6·8, containing 0·2 M-KCI, 4·5 M-urea and 2 mM-2-mercaptoethanol, but β- and αs-caseins were retained and could be eluted successively by a linear gradient from 5 mM to 250 mMphosphate buffer. Buffalo κ-casein preparations, obtained from bulk milk or from milks of individual animals by chromatography on hydroxyapatite, produced identical electrophoretic patterns at pH 8·6. By further fractionation of these κ-caseins on DEAE-cellulose, in each case, at least 7 components were purified; they had different electrophoretic mobilities but were all sensitive towards chymosin. The major fraction migrated like component 1 of bovine κ-casein B.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annan, W. D. & Manson, W. (1969). Journal of Dairy Research 36, 259.CrossRefGoogle Scholar
Aschaffenburg, R. (1963). Journal of Dairy Research 30, 259.CrossRefGoogle Scholar
Bernardi, G. & Cook, W. H. (1960). Biochimica et Biophysica Acta 44, 96.CrossRefGoogle Scholar
Castle, A. V. & Wheelock, J. V. (1971). Journal of Dairy Research 38, 69.CrossRefGoogle Scholar
Glueckauf, E. & Patterson, L. (1974). Biochimica et Biophysica Acta 351, 57.CrossRefGoogle Scholar
Green, M. L. (1969). Journal of Dairy Research 36, 353.CrossRefGoogle Scholar
Mercier, J. C., Brignon, G. & Ribadeau-Dumas, B. (1973). European Journal of Biochemistry 35, 222.CrossRefGoogle Scholar
Mercier, J. C., Grosclaude, F. & Ribadeau-Dumas, B. (1971). European Journal of Biochemistry 23, 41.CrossRefGoogle Scholar
Mercier, J. C., Maubois, J. L., Poznanski, S. & Ribadeau-Dumas, B. (1968). Bulletin de la Société de Chimic Biologique 50, 521.Google Scholar
Pujolle, J., Ribadeau-Dumas, B., Garnter, J. & Pion, R. (1966). Biochemical and Biophysical Research Communications 25, 285.CrossRefGoogle Scholar
Ribadeau-Dumas, B., Brignon, G., Grosclaude, F. & Mercier, J. C. (1972). European Journal of Biochemistry 25, 505.CrossRefGoogle Scholar
Schmidt, D. G. (1964). Biochimica et Biophysica Acta 90, 411.CrossRefGoogle Scholar
Tiselius, A., Hjertén, S. & Levin, Ö. (1956). Archives of Biochemistry and Biophysics 65, 132.CrossRefGoogle Scholar
Zittle, C. A. & Custer, J. H. (1963). Journal of Dairy Science 46, 1183.CrossRefGoogle Scholar