Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T18:02:06.105Z Has data issue: false hasContentIssue false

Fractionation and characterization of the membranes from bovine milk fat globules

Published online by Cambridge University Press:  01 June 2009

B. J. Kitchen
Affiliation:
Otto Madsen Dairy Research Laboratory, Department of Primary Industries, Hamilton, Brisbane, Australia, 4007

Summary

Bovine milk-fat globule membrane (MFGM) has been fractionated in to 3 membrane components by isopycnic sucrose density gradient centrifugation. The 3 components, designated as heavy, medium and light material, were characterized by particular polypeptide, lipid, carbohydrate and enzyme compositions.

The heavy material (density > 1·145 g/ml) was red-brown in appearance and consisted of 63% protein, 32% lipid and 5% carbohydrate. The lipid moiety contained 40% triglyceride and 60% phospholipid, while the protein consisted of 3 major polypeptides (apparent mol. wt 135000, 70000 and 53000) in the ratio of 3:6:1. This membrane class was also characterized by the presence of both xanthine oxidase and acid phosphatase. The medium density material (density 1·055–1·145 g/ml) was light red to pink in colour and consisted of 35% protein, 58% lipid and 6% carbohydrate. The lipid contained 45% triglyceride and 55% phospholipid, with nearly 70% of the original MFGM phospholipid being found in this material. The ratio of the 3 major polypeptide bands was 2:4:4 and high levels of both alkaline phosphatase and 5'-nucleotidase were present. The light material (density < 1·055 g/ml) was white to pale pink in colour and was composed of 88% lipid of which 94% was triglyceride, together with 8% protein and 4% carbohydrate. There were virtually no enzymes present and 70% of the protein consisted of a polypeptide with apparent mol. wt of 53000. The 3 membrane classes also differed in carbohydrate content and in the fatty acid composition of their triglycerides.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, K. M. & Lusena, C. V. (1961). Journal of Dairy Science 44, 1414.CrossRefGoogle Scholar
Ames, B. N. & Dubin, D. T. (1960). Journal of Biological Chemistry 235, 769.CrossRefGoogle Scholar
Anderson, M. & Cawston, T. E. (1975). Journal of Dairy Research 42, 459.CrossRefGoogle Scholar
Anderson, M., Cheeseman, G. C., Knight, D. J. & Shipe, W. F. (1972). Journal of Dairy Research 39, 95.CrossRefGoogle Scholar
Aston, J. W. (1976). Journal of Chromatography 131, 121.CrossRefGoogle Scholar
Bargmann, W. & Knoop, A. (1959). Zeitschrift für Zellforschung und Mikroskopische Anatomie 49, 344.CrossRefGoogle Scholar
Bauer, H. (1972). Journal of Dairy Science 55, 1375.CrossRefGoogle Scholar
Baumrucker, C. R. & Keenan, T. W. (1975). Journal of Dairy Science 58, 1282.CrossRefGoogle Scholar
Bracco, U., Hidalgo, J. & Bohren, H. (1972). Journal of Dairy Science 55, 165.CrossRefGoogle Scholar
Brunner, J. R. (1969). Structural and Functional Aspects of Lipoproteins in Living Systems, p. 545. (Eds Tria, E. and Scanu, A. M..) New York: Academic Press.Google Scholar
Brunner, J. R. (1974). Fundamentals in Dairy Chemistry, 2nd edn, p. 474. (Eds Webb, B. H., Johnson, A. H. and Alford, J. A..) Westport, Conn.: Avi Publishing Co.Google Scholar
Chien, H. C. & Richardson, T. (1967). Journal of Dairy Science 50, 451.CrossRefGoogle Scholar
Christopherson, S. W. & Glass, R. L. (1969). Journal of Dairy Science 52, 1289.CrossRefGoogle Scholar
Copius Peereboom, J. W. (1969). Milchwissenschaft 24, 266.Google Scholar
Dulley, J. R. & Grieve, P. A. (1975). Analytical Biochemistry 64, 136.CrossRefGoogle Scholar
Evans, W. H. (1970). Biochemical Journal 116, 833.CrossRefGoogle Scholar
Fairbanks, G., Steck, T. L. & Wallach, D. F. H. (1971). Biochemistry 10, 2606.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957). Journal of Biological Chemistry 226, 497.CrossRefGoogle Scholar
Gatt, R. & Berman, E. R. (1966). Analytical Biochemistry 15, 167.CrossRefGoogle Scholar
Hayashi, S. & Smith, L. M. (1965). Biochemistry 4, 2550.CrossRefGoogle Scholar
Jenness, R. & Palmer, L. S. (1945). Journal of Dairy Science 28, 611.CrossRefGoogle Scholar
Keenan, T. W. (1974). Biochimica et Biophysica Acta 337, 255.CrossRefGoogle Scholar
Keenan, T. W. & Huang, C. M. (1972). Journal of Dairy Science 55, 1586.CrossRefGoogle Scholar
Keenan, T. W., Morré, D. J., Olson, D. E., Yunghans, W. N. & Patton, S. (1970). Journal of Cell Biology 44, 80.CrossRefGoogle Scholar
King, N. (1955). The Milk Fat Globule Membrane, p. 546. Farnham Royal, Berks: Commonwealth Agricultural Bureaux.Google Scholar
Kitchen, B. J. (1974). Biochimica et Biophysica Acta 356, 257.CrossRefGoogle Scholar
Kobylka, D. & Carraway, K. L. (1972). Biochimica et Biophysica Acta 288, 282.CrossRefGoogle Scholar
Levy, R. I., Bilheimer, D. W. & Eisenberg, S. (1971). Plasma Lipoproteins, p. 3. (Ed. Smellie, R. M. S..) New York: Academic Press.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265.CrossRefGoogle Scholar
Mather, I. H. & Keenan, T. W. (1975). Journal of Membrane Biology 21, 65.CrossRefGoogle Scholar
Mulder, H. & Walstra, P. (1974). The Milk Fat Globule – emulsion science as applied to milk products and comparable foods, p. 67. Farnham Royal, Berks: Commonwealth Agricultural Bureaux.Google Scholar
Palmer, L. S. & Wiese, H. F. (1933). Journal of Dairy Science 16, 41.CrossRefGoogle Scholar
Parodi, P. W. (1970). Australian Journal of Dairy Technology 25, 200.Google Scholar
Parodi, P. W. (1974). Australian Journal of Dairy Technology 29, 20.Google Scholar
Patton, S. (1973). Journal of the American Oil Chemists Society 50, 178.CrossRefGoogle Scholar
Patton, S. & Keenan, T. W. (1975). Biochimica et Biophysica Acta 415, 273.CrossRefGoogle Scholar
Plantz, P. E., Patton, S. & Keenan, T. W. (1973). Journal of Dairy Science 56, 978.CrossRefGoogle Scholar
Searcy, R. L., Bergquist, L. M. & Jung, R. C. (1960). Journal of Lipid Research 1, 349.CrossRefGoogle Scholar
Skipski, V. P. & Barclay, M. (1969). Methods in Enzymology 14, 544.Google Scholar
Soloni, F. G. (1971). Clinical Chemistry 17, 529.CrossRefGoogle Scholar
Solyom, A. & Trams, E. G. (1972). Enzyme 13, 329.CrossRefGoogle ScholarPubMed
Spiro, R. G. (1966). Methods in Enzymology 8, 3.CrossRefGoogle Scholar
Swope, F. C. & Brunner, J. R. (1970). Journal of Dairy Science 53, 691.CrossRefGoogle Scholar
Thompson, M. P., Brunner, J. R. & Stine, C. M. (1959). Journal of Dairy Science 42, 1651.CrossRefGoogle Scholar
Vasic, J. & deMan, J. M. (1966). 17th International Dairy Congress, Munich C, 167.Google Scholar
Walstra, P. (1974). Netherlands Milk & Dairy Journal 28, 3.Google Scholar
Warren, L. (1959). Journal of Biological Chemistry 234, 1971.CrossRefGoogle Scholar
Wooding, F. B. P. (1971 a). Journal of Cell Science 9, 805.CrossRefGoogle Scholar
Wooding, F. B. P. (1971 b). Journal of Ultrastructure Research 37, 388.CrossRefGoogle Scholar
Wooding, F. B. P. (1973). Journal of Cell Science 13, 221.CrossRefGoogle Scholar
Wooding, F. B. P. & Kemp, P. (1975). Journal of Dairy Research 42, 419.CrossRefGoogle Scholar