Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T07:30:37.126Z Has data issue: false hasContentIssue false

Fatty acid composition of sow's colostrum, milk and body fat as determined by gas-liquid chromatography*

Published online by Cambridge University Press:  01 June 2009

J. M. deMan
Affiliation:
Departments of Dairy Science and Animal Science, University of Alberta, Edmonton, Alberta, Canada
J. P. Bowland
Affiliation:
Departments of Dairy Science and Animal Science, University of Alberta, Edmonton, Alberta, Canada

Summary

As determined by gas-liquid chromatography, the mean fatty acid composition (weight percentages of total fatty acids) of milk fat from sows fed a diet to meet U.S. N.R.C. nutrient requirements was: oleic, 35·3; palmitic, 30·3; linoleic, 13·0; palmitoleic, 9·9; stearic, 4·0; myristic, 3·3; linolenic, 2·5; unidentified 0·7 and 0·5, presumably n-odd chain and branched fatty acids; lauric, 0·3; and capric, 0·2. The corresponding fatty acid composition of colostrum fat was: oleic, 41·7; palmitic, 22·5; linoleic, 20·9; palmitoleic, 5·0; stearic, 5·7; myristic, 1·4; linolenic, 2·4; and unidentified acids, 0·3 and 0·1. Dietary fat increased fat levels in the milk and influenced fatty acid composition of the milk fat. Backfat resembled colostrum fat more than milk fat.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beeson, W. M., Crampton, E. W., Cunha, T. J., Ellis, N. R. & Luecke, R. W. (1959). Publ. nat. Res. Counc., Wash., no. 648.Google Scholar
Bowland, J. P., Grummer, R. H., Phillips, P. H. & Bohstedt, G. (1949 a). J. Dairy Sci. 32, 22.CrossRefGoogle Scholar
Bowland, J. P., Grummer, R. H., Phillips, P. H. & Bohstedt, G. (1949 b). J. Anim. Sci. 8, 199.CrossRefGoogle Scholar
Bowland, J. P., Grummer, R. H., Phillips, P. H. & Bohstedt, G. (1949 c). J. Anim. Sci. 8, 98.CrossRefGoogle Scholar
Braude, R., Coates, M. E., Henry, K. M., Kon, S. K., Rowland, S. J., Thompson, S. Y. & Walker, D. M. (1947). Brit. J. Nutr. 1, 64.CrossRefGoogle Scholar
De La Mare, P. B. D. & Shorland, F. B. (1944). Nature, Lond., 153, 380.Google Scholar
DeMan, J. M. (1961). Milchwissenschaft, 16, 245.Google Scholar
Herb, S. F., Magidman, P., Luddy, F. E. & Riemenschneider, R. W. (1962). J. Amer. Oil Chem. Soc. 39, 142.CrossRefGoogle Scholar
Laxa, O. (1931). Ann. Falsif., Fraudes, 24, 87.Google Scholar
Maynard, L. A. & Loosli, J. K. (1962). Animal Nutrition. New York and Toronto: McGraw-Hill.Google Scholar
Perrin, D. R. (1954). J. Dairy Res. 21, 55.CrossRefGoogle Scholar
Sheffy, B. E., Phillips, P. H., Dymsza, H. A., Grummer, R. H. & Bohstedt, G. (1952). J. Anim. Sci. 11, 727.CrossRefGoogle Scholar
Shorland, F. B. & Hansen, R. P. (1957). Dairy Sci. Abstr. 19, 168.Google Scholar
Smith, L. M. (1961). J. Dairy Sci. 44, 607.CrossRefGoogle Scholar
von Neuhaus, U. (1961). Z. Tierz. ZuchtBiol. 75, 160.CrossRefGoogle Scholar
Willett, E. L. & Maruyama, C. (1946). J. Anim. Sci. 5, 365.CrossRefGoogle Scholar