Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T11:27:15.741Z Has data issue: false hasContentIssue false

Fast protein liquid chromatography purification of hydrophobic fraction of bovine milk proteose-peptone and characterization by bidimensional electrophoresis

Published online by Cambridge University Press:  01 June 2009

Jean-Michel Girardet
Affiliation:
Applied Biochemistry Laboratory, Associated with INRA, Faculty of Sciences, University of Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France
Abderrahmane Mati
Affiliation:
Applied Biochemistry Laboratory, Associated with INRA, Faculty of Sciences, University of Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France
Tibogo Sanogo
Affiliation:
Applied Biochemistry Laboratory, Associated with INRA, Faculty of Sciences, University of Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France
Luc Etienne
Affiliation:
Applied Biochemistry Laboratory, Associated with INRA, Faculty of Sciences, University of Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France
Guy Linden
Affiliation:
Applied Biochemistry Laboratory, Associated with INRA, Faculty of Sciences, University of Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France

Summary

Bovine milk Hydrophobic fraction of proteose-peptone was prepared by hydrophobic interaction fast protein liquid chromatography. This method has several advantages such as high rapidity, simple good reproducibility and less denaturation. The proteose-peptone was eluted from a TSK-Phenyl-5PW column with a 1 M-0 M ionic strength gradient of NaH2PO4, pH 6·8, using a 6 ml/min flow rate for 56 min. The quantity of protein injected was 62·5 mg; however, it could be increased up to 100 mg. The elution order was β-CN-4P < BSA (1·6% of total N) < β-CN-5P < β-CN-1P. The hydrophobic fraction was obtained in pure water at the end of the gradient (17·3% of total N). A proteose-peptone cartograph was achieved by bidimensional electrophoresis. This hydrophobic fraction represented three principal zones of Mr 30000–28000, 19000 and 11000, which were respectively composed of 13, 4 and 2 principal spots distributed between 4·9 and 6·1 isoelectric points (IP). These spots corresponded to glycoproteins. ·7, 5·0 and 5·1 IP which migrated to Mr 18000 while β-CN-1P was identified as Mr 9000 in two spots of 5·1 and 5·3 IP.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addeo, F., Mauriello, R. & Di Luccia, A. 1988 A gel electrophoretic study of caprine casein. Journal of Dairy Research 55 413421CrossRefGoogle Scholar
Anderson, M. 1981 Inhibition of lipolysis in bovine milk by proteose-peptone. Journal of Dairy Research 48 247252CrossRefGoogle ScholarPubMed
Andrews, A. T. 1978 The composition, structure and origin of proteose-peptone component 5 of bovine milk. European Journal of Biochemistry 90 5965CrossRefGoogle ScholarPubMed
Andrews, A. T. 1979 The formation and structure of some proteose-peptone components. Journal of Dairy Research 46 215218CrossRefGoogle ScholarPubMed
Andrews, A. T. 1981 Detection and measurement by the electrophoretic pattern of peptides produced by caseinolysis. In Methods of Enzymatic Analysis, 3rd ed, vol. 5, pp. 277285 (Ed. Bergmeyer, H. U.) New York: Academic PressGoogle Scholar
Andrews, A. T. & Alichanidis, E. 1983 Proteolysis of caseins and the proteose-peptone fraction of bovine milk. Journal of Dairy Research 50 275290CrossRefGoogle ScholarPubMed
Cartier, P. & Chilliard, Y. 1986 Effects of different skim milk fractions on activity of cow milk purified lipoprotein lipase. Journal of Dairy Science 69 951955CrossRefGoogle ScholarPubMed
Chaplin, L. C. 1986 Hydrophobic interaction fast protein liquid chromatography of milk proteins. Journal of Chromatography 363 329335CrossRefGoogle ScholarPubMed
Edge, A. S. B. & Spiro, R. G. 1987 Selective deglycosylation of the heparan sulfate proteoglycan of bovine glomerular basement membrane and identification of the core protein. Journal of Biological Chemistry 262 68936898CrossRefGoogle ScholarPubMed
Eigel, W. N. 1981 Identification of proteose-peptone component 5 as a plasmin-derived fragment of bovine β-casein. International Journal of Biochemistry 13 10811086CrossRefGoogle ScholarPubMed
Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Harwalkar, V. R., Jenness, R. & Whitney, R. McL. 1984 Nomenclature of proteins of cow's milk: fifth revision. Journal of Dairy Science 67 15991631CrossRefGoogle Scholar
Eigel, W. N. & Keenan, T. W. 1979 Identification of proteose-peptone component 8-slow as a plasmin-derived fragment of bovine β-casein. International Journal of Biochemistry 10 529535CrossRefGoogle ScholarPubMed
Frank, R. N. & Rodbard, D. 1975 Precision of sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the molecular weight estimation of a membrane glycoprotein: studies on bovine rhodopsin. Archives of Biochemistry and Biophysics 171 113CrossRefGoogle ScholarPubMed
Girardet, J. M., Pâquet, D. & Linden, G. 1989 Effects of Chromatographic parameters on the fractionation of whey proteins by anion exchange FPLC. Milchwissenschaft 44 692696Google Scholar
Gu, J., Matsuda, T., Nakamura, R., Ishiguro, H., Ohkudo, I., Sasaki, M. & Takahashi, N. 1989 Chemical deglycosylation of hen ovomucoid: protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation. Journal of Biochemistry 106 6670CrossRefGoogle ScholarPubMed
Holt, D. L. & Zeece, M. G. 1988 Two-dimensional electrophoresis of bovine milk proteins. Journal of Dairy Science 71 20442050CrossRefGoogle Scholar
International Dairy Federation 1962 Determination of the total nitrogen content of milk by the Kjeldahl method. (FIL-IDF Standard 20)Google Scholar
Kanno, C. 1989 a Purification and separation of multiple forms of lactophorin from bovine milk whey and their immunological and electrophoretic properties. Journal of Dairy Science 72 883891CrossRefGoogle ScholarPubMed
Kanno, C. 1989 b Characterization of multiple forms of lactophorin isolated from bovine milk whey. Journal of Dairy Science 72 17321739CrossRefGoogle ScholarPubMed
Kapitany, R. A. & Zebrowski, E. J. 1973 A high resolution PAS stain for polyacrylamide gel electrophoresis. Analytical Biochemistry 56 361369CrossRefGoogle ScholarPubMed
Karman, A. H. & Van Boekel, M. A. J. S. 1986 Evaluation of the Kjeldahl factor for conversion of the nitrogen content of milk and milk products to protein content. Netherlands Milk and Dairy Journal 40 315336Google Scholar
Kasper, G. A. & Brunner, J. R. 1978 Electrophoretic characterization of the proteose-peptone fraction of cow's milk. Journal of Dairy Science 61 (Suppl. 1) 112–112Google Scholar
Kester, J. J. & Brunner, J. R. 1982 Milk fat-globule membrane as possible origin of proteose-peptone glycoproteins. Journal of Dairy Science 65 22412252CrossRefGoogle Scholar
Laemmli, U. K. & Favre, M. 1973 Maturation of the head of bacteriophage T4. I. DNA packaging events. Journal of Molecular Biology 80 575599CrossRefGoogle ScholarPubMed
Nejjar, Y., Pâquet, D., Godbillon, G. & Le Deaut, J. Y. 1986 Immunological relationship between the Hydrophobic fraction of proteose-peptone and the milk fat globule membrane of bovine milk. International Journal of Biochemistry 18 893900CrossRefGoogle ScholarPubMed
Ng-Kwai-Hang, K. F., Hayes, J. F., Moxley, J. E. & Monardes, H. G. 1984 Association of genetic variants of casein and milk serum proteins with milk, fat, and protein production by dairy cattle. Journal of Dairy Science 67 835840CrossRefGoogle ScholarPubMed
Pâquet, D. 1989 [Review: the proteose-peptone fraction of milk.] Lait 69 121CrossRefGoogle Scholar
Pâquet, D. & Alais, C. 1982 [Purification and some molecular characteristics of component 3 of proteose-peptones.] Lait 62 338349CrossRefGoogle Scholar
Pâquet, D., Nejjar, Y. & Linden, G. 1988 Study of a hydrophobic protein fraction isolated from milk proteose-peptone. Journal of Dairy Science 71 14641471CrossRefGoogle Scholar
Poduslo, J. F. 1981 Glycoprotein molecular-weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis: comparison of Tris-glycine and Tris-borate-EDTA buffer systems. Analytical Biochemistry 114 131139CrossRefGoogle ScholarPubMed
Sanogo, T., Pâquet, D., Aubert, F. & Linden, G. 1989 Purification of αs1-casein by fast protein liquid chromatography. Journal of Dairy Science 72 22422246CrossRefGoogle Scholar
Sanogo, T., Pâquet, D., Aubert, F. & Linden, G. 1990 Proteolysis of αs1-casein by papain in a complex environment. Influence of ionic strength on the reaction products. Journal of Food Science 55 796800CrossRefGoogle Scholar
Shimizu, M., Yamauchi, K. & Saito, M. 1989 Emulsifying properties of the proteose-peptone fraction obtained from milk. Milchwissenschaft 44 497500Google Scholar
Shimomura, K. & Bremel, R. D. 1988 Characterization of bovine placental lactogen as a glycoprotein with N-linked and O-linked carbohydrate side chains. Molecular Endocrinology 2 845853CrossRefGoogle ScholarPubMed
Trieu-Cuot, P. & Gripon, J.-C. 1981 Electrofocusing and two-dimensional electrophoresis of bovine caseins. Journal of Dairy Research 48 303310CrossRefGoogle Scholar
Trieu-Cuot, P. & Gripon, J.-C. 1982 A study of proteolysis during Camembert cheese ripening using isoelectric focusing and two-dimensional electrophoresis. Journal of Dairy Research 49 501510CrossRefGoogle Scholar
Welsch, U., Buchheim, W., Schumacher, U., Schinko, I. & Patton, S. 1988 Structural, histochemical and biochemical observations on horse milk-fat-globule membranes and casein micelles. Histochemistry 88 357365CrossRefGoogle ScholarPubMed
Yoshida, S. 1989 Preparation of lactoferrin by hydrophobic interaction chromatography from milk acid whey. Journal of Dairy Science 72 14461450CrossRefGoogle Scholar