Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T01:24:21.276Z Has data issue: false hasContentIssue false

Effects of high-pressure treatment on free fatty acids release during ripening of ewes' milk cheese

Published online by Cambridge University Press:  26 October 2007

Bibiana Juan
Affiliation:
Centre Especial de Recerca Planta de Tecnologia dels Aliments (CERPTA), CeRTA, XiT, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Victoria Ferragut
Affiliation:
Centre Especial de Recerca Planta de Tecnologia dels Aliments (CERPTA), CeRTA, XiT, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Martin Buffa
Affiliation:
Centre Especial de Recerca Planta de Tecnologia dels Aliments (CERPTA), CeRTA, XiT, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Buenaventura Guamis
Affiliation:
Centre Especial de Recerca Planta de Tecnologia dels Aliments (CERPTA), CeRTA, XiT, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Antonio-José Trujillo*
Affiliation:
Centre Especial de Recerca Planta de Tecnologia dels Aliments (CERPTA), CeRTA, XiT, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*
*For correspondence; e-mail: [email protected]

Abstract

The free fatty acid (FFA) profile of high pressure treated ewes' milk cheeses were studied to assess the effect of pressure treatment on cheese lipolysis. Cheeses were treated at 200, 300, 400 or 500 MPa (2P to 5P) at two stages of ripening (after 1 and 15 days of manufacturing; P1 and P15) and FFA were assayed at 1, 15 and 60 d ripening. On the first day of ripening, 3P1-cheeses showed levels of FFA twice that of the control cheeses. However, no significant differences were found between 3P1 and control cheeses at 60 d ripening. On the contrary, 4P1 and 5P1-cheeses had the lowest total FFA levels. The point at which pressure treatment was applied influenced the FFA profile of cheeses; cheeses pressurized at pressures <400 MPa on the first day of ripening were more similar to untreated cheeses than their homologues treated at 15 d.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, AT, Anderson, M & Goodenough, PW 1987 A study of the heat stabilities of a number of indigenous milk enzymes. Journal of Dairy Research 54 237246CrossRefGoogle Scholar
Chávarri, F, Bustamante, MA, Santisteban, A, Virto, M, Barrón, LJR & de Renobales, M 1999 Changes in free fatty acids during ripening of Idiazabal cheese manufactured at different times of the year. Journal of Dairy Science 82 885890CrossRefGoogle Scholar
Chich, JF, Marchesseau, K & Gripon, JC 1997 Intracellular esterase from Lactococcus lactis subsp. lactis NCDO 763: Purification and characterization. International Dairy Journal 7 169174CrossRefGoogle Scholar
Collins, Y, McSweeney, PLH & Wilkinson, MG 2003a Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. International Dairy Journal 13 841866CrossRefGoogle Scholar
Collins, Y, McSweeney, PLH & Wilkinson, MG 2003b Evidence for a relationship between autolysis of starter bacteria and lipolysis in Cheddar cheese. Journal of Dairy Research 70 105113CrossRefGoogle ScholarPubMed
De Jong, C & Badings, HT 1990 Determination of free fatty acids in milk and cheese procedures for extraction, clean up and capillary gas chromatographic analysis. Journal of High Resolution Chromatography 13 9498CrossRefGoogle Scholar
Driessen, FM 1989 Heat-induced changes in milk. International Dairy Federation Bulletin n° 238 IDF-FDI: BrusselsGoogle Scholar
Fernández-García, E, Ramos, M, Polo, C, Juárez, M & Olano, A 1988 Enzyme accelerated ripening of Spanish hard cheese. Food Chemistry 28 6380CrossRefGoogle Scholar
Fernández-García, E, Carbonell, M, Calzada, J & Nuñez, M 2006 Seasonal variation of the free fatty acids contents of Spanish ovine milk cheeses protected by a designation of origin: A comparative study. International Dairy Journal 16 252261CrossRefGoogle Scholar
Fox, PF & Wallace, JM 1997 Formation of flavour compounds in cheese. Advances in Applied Microbiology 45 1785CrossRefGoogle ScholarPubMed
Fox, PF & Stepaniak, L 1993 Enzymes in cheese technology. International Dairy Journal 3 509530CrossRefGoogle Scholar
Georgala, A, Moschopoulou, E, Aktypis, A, Massouras, T, Zoidou, E, Kandarakis, I & Anifantakis, E 2005 Evolution of lipolysis during the ripening of traditional Feta cheese. Food Chemistry 93 7380CrossRefGoogle Scholar
Gripon, JC 1993 Mould ripened cheeses. In Cheese: chemistry, physics and microbiology, vol 2 (2nd ed.), pp. 111136 (Ed. Fox, PF). Chapman & Hall: LondonCrossRefGoogle Scholar
IDF 1982 Cheese and processed cheese Determination of the total solids content. Brussels: IDF-FID (FIL-IDF Standard 4A)Google Scholar
IDF 1993 Milk determination of the total nitrogen content. Brussels: IDF-FID (FIL-IDF Standard 20B)Google Scholar
ISO 1975 Cheese-determination of fat content-van Gulik method International Organization for Standardization Standard 3433. Leusden, Netherlands: International Organization for StandardizationGoogle Scholar
Juan, B, Ferragut, V, Guamis, B, Buffa, M & Trujillo, AJ 2004a Proteolysis of high pressure-treated ewe's milk cheese. Milchwissenschaft 59 616619Google Scholar
Juan, B, Barron, LJR, Ferragut, V & Trujillo, AJ 2007b Effects of high pressure treatment on volatile profile during ripening of ewe milk cheese. Journal of Dairy Science 90 124135CrossRefGoogle ScholarPubMed
Juan, B, Ferragut, V, Buffa, M, Guamis, B & Trujillo, AJ 2007c Effects of high pressure on proteolytic enzymes in cheese: relationship with the proteolysis of ewe milk cheese. Journal of Dairy Science 90 21132125CrossRefGoogle ScholarPubMed
Juan, B, Trujillo, AJ, Guamis, B, Buffa, M & Ferragut, V 2007 Rheological, textural and sensory characteristics of high-pressure treated semi-hard ewes' milk cheese. International Dairy Journal 17 248254CrossRefGoogle Scholar
Khalid, NM & Marth, EH 1990 Lactobacilli their enzymes and role in ripening and spoilage of cheese. Journal of Dairy Science 73 26692684CrossRefGoogle Scholar
Kolakowski, P, Reps, A & Babuchowski, A 1998 Characteristics of pressurised ripened cheeses. Polish Journal of Food and Nutrition Sciences 7 473482Google Scholar
Kondyli, E & Katsiari, MC 2001 Differences in lipolysis of Greek hard cheeses made from sheep's, goat's or cow's milk. Milchwissenschaft 56 444446Google Scholar
Kunugi, S 1992 Modification of biopolymer functions by high pressure. Progress in Polymer Science 18 805838CrossRefGoogle Scholar
Law, BA 2001 Controlled and accelerated cheese ripening: the research base for new technologies. International Dairy Journal 11 383398CrossRefGoogle Scholar
López, C 2005 Focus on the supramolecular structure of milk fat in dairy products. Reproduction Nutrition Development 45 497511CrossRefGoogle ScholarPubMed
Lortal, S & Chapot-Chartier, MP 2005 Role, mechanisms and control of lactic acid bacteria lysis in cheese. Review International Dairy Journal 15 857871CrossRefGoogle Scholar
Mallatou, H, Pappa, E & Massouras, T 2003 Changes in free fatty acids during ripening of Teleme cheese made with ewes', goats', cows' or a mixture of ewes' and goats' milk. International Dairy Journal 13 211219CrossRefGoogle Scholar
Malone, AS, Shellhammer, TH & Courtney, PD 2002 Effects of high pressure on the viability, morphology, lysis and cell wall hydrosase activity of Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology 68 43574363CrossRefGoogle ScholarPubMed
McSweeney, PLH & Sousa, MJ 2000 Biochemical pathways for the production of flavour compounds in cheese during ripening. A review. Lait 80 293324CrossRefGoogle Scholar
Messens, W, Foubert, I, Dewettinck, K & Huyghebaert, A 2000 Proteolysis of a high-pressure-treated smear-ripened cheese. Milchwissenschaft 55 328332Google Scholar
Nelson, JH, Jensen, RG & Pitas, RE 1977 Pregastric esterase and other oral lipases. A review. Journal Dairy Science 60 327362CrossRefGoogle ScholarPubMed
O'Reilly, CE, Kelly, AL, Murphy, PM & Beresford, TP 2001 High pressure treatment: applications in cheese manufacture and ripening. Trends in Food Science and Technology 12 5159CrossRefGoogle Scholar
O'Reilly, C, Kelly, AL, Oliveira, JC, Murhpy, PM, Auty, MAE & Beresford, TP 2003 Effect of varying high-pressure treatment conditions on acceleration of ripening of Cheddar cheese. Innovative Food Science and Emerging Technologies 4 277284CrossRefGoogle Scholar
Pandey, PK & Ramaswamy, HS 2004 Effect of high-pressure treatment of milk on lipase and γ-glutamyl transferase activity. Journal of Food Biochemistry 28 449462CrossRefGoogle Scholar
Poveda, JM, Pérez-Coello, MS & Cabeza, L 2000 Seasonal variations in the free fatty acid composition of Manchego cheese and changes during ripening. European Food Research and Technology 210 314317CrossRefGoogle Scholar
Reps, A 1993 Bacterial surface-ripened cheese. In Cheese: chemistry, physics and microbiology vol 2 (2nd ed.), pp. 137172 (Ed. Fox, PF). London: Chapman & HallCrossRefGoogle Scholar
Saldo, J, McSweeney, PLH, Sendra, E, Kelly, AL & Guamis, B 2002 Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. International Dairy Journal 12 3544CrossRefGoogle Scholar
Saldo, J, Fernández, A, Sendra, E, Butz, P, Tauscher, B & Guamis, B 2003 High pressure treatment decelerates the lipolisis in a caprine cheese. Food Research International 36 10611068CrossRefGoogle Scholar
Seyderhelm, I, Boguslawsky, S, Michaelis, G & Knorr, D 1996 Pressure induced inactivation of selected food enzymes. Journal of Food Science 61 308310CrossRefGoogle Scholar
Simpson, RK & Gilmour, A 1997 The effect of hig hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Letters of Applied Microbilogy 25 4853CrossRefGoogle Scholar
Trujillo, AJ, Royo, C, Guamis, B & Ferragut, V 1999 Influence of pressurization on goat milk and cheese composition and yield. Milchwissenschaft 54 197199Google Scholar
Urbach, G 1993 Relations between cheese flavour and chemical composition. International Dairy Journal 3 389422CrossRefGoogle Scholar
Walstra, P, Noomen, A & Geurts, TJ 1993 Dutch-type varieties. In Cheese: chemistry, physics and microbiology, vol 2 (2nd ed.), pp. 3982 (Ed. Fox, PF). London: Chapman & HallCrossRefGoogle Scholar
Wilkinson, MG & Kilcawley, KN 2005 Mechanisms of incorporation and release of enzymes into cheese during ripening. International Dairy Journal 15 817830CrossRefGoogle Scholar