Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T15:38:21.307Z Has data issue: false hasContentIssue false

The effects of dietary urea and ammonium sulphate on the yield and composition of sheep milk

Published online by Cambridge University Press:  01 June 2009

G. Tanev
Affiliation:
Institute for Livestock Breeding, Sofia–Kostinbrod, Bulgaria

Summary

An experiment lasting 4 years has been carried out with 4 groups (3 test and a control) of 10 sheep. Non-protein nitrogen (NPN) (as urea, ammonium sulphate or a mixture of the two) replaced 25% of the dietary nitrogen in the first 2 years and 50% in the second 2 years. The yields of milk, protein and fat were generally depressed in the test groups but not all of the differences reached significance. In the group receiving ammonium sulphate, the milk fat percentage was higher than in the control group in all years and the protein percentage was higher in the last 2 years. Contrary to results elsewhere, the yield of lactose was depressed in all test groups. In the urea group, the content of minerals and of calcium in the milk was significantly less than in the control groups. The total amount of NPN and its components (ammonia, urea and creatine) in milk were not affected by the substitution of NPN in the rations.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Briggs, M. H. & Hogg, M. L. (1964). Life Sci., N.Y. 3, 1493.CrossRefGoogle Scholar
Carrez, C. (1908). Annls Chim. analyt. 13, 17.Google Scholar
Carrez, C. (1909). Annls Chim. analyt. 14, 187.Google Scholar
Flatt, W. P., Moe, P. W., Oltjen, R. R., Putnam, P. A. & Hooven, N. W. (1969). Publs Eur. Ass. Anim. Prod. no. 12, p. 109. (Proc. IVth Symposium on Energy Metabolism, Jablonna, Poland.)Google Scholar
Gericke, S. & Kurmies, B. (1952). Z. Pfl-Ernähr. Düng. Bodenk. 59, 235.Google Scholar
Halverson, A. W., Williams, G. D. & Paulson, G. D. (1968). J. Nutr. 95, 363.CrossRefGoogle Scholar
Inikhov, G. S. & Brio, N. P. (1949). Khimicheskii Analiz Molochnikh Produktov. Moskva: Pishchepromizdat.Google Scholar
Jaffe, M. (1886). Hoppe-Seyler's Z. physiol. Chem. 10, 399.Google Scholar
Khirwar, S. S., Pandit, N. N. & Sengar, O. P. S. (1965). Balwant Vidyapeeth J. agric. scient. Res. 7, 49.Google Scholar
Mclaren, G. L., Smith, J. E. & Peters, J. E. (1968). J. Anim. Sci. 4, 1171.Google Scholar
Nikolchev, G. (1966). MNZSG-ON, Sof. 135.Google Scholar
Platikanov, N., Tanev, I., Hincovski, C. & Solomonov, H. (1961). Tipovi dazbi i godishni furazni normi za razlichni vidove i kategorii selskostopanski zivotni. Sofia: Izdatelstvo B.A.N.Google Scholar
Schwarz, G. & Hagemann, B. (1950). Methodenbuch, Bd. vi. Radebeul and Berlin: Neumann Verlag.Google Scholar
Scott, W.W., De paula assis, F., Gambini, L. B. & De sousa lucci, C. (19651966). Bolm Ind. anim. 23, 11.Google Scholar
Shahani, K. M. & Sommer, H. H. (1951). J. Dairy Sci. 34, 1035.CrossRefGoogle Scholar
Todorov, N., Angelova, L., Mineva, P., Koumanov, ST. & Ivanov, N. (1969). Zhivotnovudni Nauki, Sof. 6 (6), 31.Google Scholar
Virtanen, A. (1966). Science, N.Y. 153, 1603.CrossRefGoogle Scholar
Virtanen, A. (1967). Neth. Milk Dairy J. 21, 223.Google Scholar