Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T02:59:58.176Z Has data issue: false hasContentIssue false

The effect of restricted grazing during a single day upon milk yield, milk composition and butterfat characteristics

Published online by Cambridge University Press:  01 June 2009

R. E. Munford
Affiliation:
Massey University College and The Dairy Research Institute (N. Z.), Palmerston North, New Zealand
I. L. Campbell
Affiliation:
Massey University College and The Dairy Research Institute (N. Z.), Palmerston North, New Zealand
F. H. McDowall
Affiliation:
Massey University College and The Dairy Research Institute (N. Z.), Palmerston North, New Zealand
A. W. F. Davey
Affiliation:
Massey University College and The Dairy Research Institute (N. Z.), Palmerston North, New Zealand

Summary

The effects of depriving cows of pasture, for part or all of a single interval between the morning and evening milkings, on milk yield and composition have been investigated. The yields of milk and solids-not-fat, but not of fat, were reduced. The characteristics of the butterfat obtained at the first 2 milkings following grazing restriction differed markedly from those of cows allowed to graze normally.

The changes observed suggested that the grazing restriction led to a temporary reduction in the supply of volatile fatty acids from the rumen and an increased utilization of fatty acids from body fat by the mammary gland.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F. & Lewis, D. (1959). Metabolism in the Rumen, p. 163. London: Methuen.Google Scholar
Astwood, E. B. (1955). In The Hormones, 3, 235 (eds. Pincus, G. and Thimann, K. V.). New York: Academic Press.CrossRefGoogle Scholar
Barnicoat, C. R. (1944). Analyst, 69, 176.CrossRefGoogle Scholar
Bossak, E. T., Wang, C.-L. & Adlersberg, D. (1956). J. clin. Endocrin. 16, 613.CrossRefGoogle Scholar
British Standards Institution (1958). B.S. 684. Methods of Analysis of Oils and Fats.Google Scholar
Campbell, I. L. & Dolby, R. M. (1953). Dairy Sci. Abstr. 15, 669.Google Scholar
Campbell, I. L. & Dolby, R. M. (1959). Dairy Sci. Abstr. 21, 95.Google Scholar
Cochran, W. G., Autrey, K. M. & Cannon, C. Y. (1941). J. Dairy Sci. 24, 937.CrossRefGoogle Scholar
Cochran, W. G. & Cox, G. M. (1957). Experimental Designs, 2nd ed. pp. 80et seq. New York: Wiley & Sons.Google Scholar
Cross, B. A. (1961). In Milk: the Mammary Gland and its Secretion, pp. 229et seq. (eds. Kon, S. K. and Cowie, A. T.). New York: Academic Press.Google Scholar
Dolby, R M. (1954). J. Dairy Res. 21, 78.CrossRefGoogle Scholar
Eckles, C. H. & Palmer, L. S. (1916). Res. Bull. Mo. agric. Exp. Sta. no. 25.Google Scholar
Hancock, J. (1953). Anim. Breed. Abstr. 21, 1.Google Scholar
Harris, G. W. (1955). Neural Control of the Pituitary Gland. London: Arnold.Google Scholar
McClymont, G. L. (1951). Aust. J. agric. Res. 2, 158.CrossRefGoogle Scholar
Rook, J. A. F. (1959). Proc. Nutr. Soc. 18, 117.CrossRefGoogle Scholar
Rook, J. A. F. & Balch, C. C. (1959). Proc. Nutr. Soc. 18, xxxiv.CrossRefGoogle Scholar
Smith, J. A. B. & Dastur, N. N. (1938). Biochem. J. 32, 1868.CrossRefGoogle Scholar
Snedecor, G. W. (1946). Statistical Methods, 4th edn, pp. 253et seq., 318 et seq. Ames: Iowa State College Press.Google ScholarPubMed