Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T07:57:01.042Z Has data issue: false hasContentIssue false

Different bacteriophage resistance mechanisms in Streptococcus salivarius subsp. thermophilus

Published online by Cambridge University Press:  01 June 2009

Dejla Larbi
Affiliation:
Laboratoire de Génetique et Microbiologie, Faculté des Sciences, Université Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy, France
Bernard Decaris
Affiliation:
Laboratoire de Génetique et Microbiologie, Faculté des Sciences, Université Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy, France
Jean-Marc Simonet
Affiliation:
Laboratoire de Génetique et Microbiologie, Faculté des Sciences, Université Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy, France

Summary

Streptococcus salivarius subsp. thermophilus strain NST5 exhibited a temperature-dependent defence mechanism against the virulent bacteriophages φ.B1.2 and φA1.1. It was active at 42 °C but not at 30 °C as demonstrated by a significant increase of both plaque size and efficiency of plaquing. This defence mechanism did not affect host-dependent phage replication and did not interfere with phage adsorption to NST5. These results suggest that it interfered with phage development. The phages φT33, φT58, φD1, φT21 and φT9, belonging to the same phage type as φB1.2, were examined for their ability to infect NST3 and NST5. Restriction modification systems of different specificity were detected in NST3 and NST5; host-dependent phage replication was detected at 30 and 42 °C; an abortive defence mechanism was detected in NST5 which was active at 42 °C, but not 30 °C, and was independent of restriction modification action or interference with phage adsorption. Our investigations of phage-host interactions showed that the two Str. salivarius subsp. thermophilus strains studied avoided attack by related bacteriophages by evolving at least three different resistance systems.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benbadis, L., Falelen, M., Slos, P., Fazel, A. & Mercenier, A. 1990 a Characterization and comparison of virulent bacteriophages of Streptococcus thermophilus isolated from yogurt. Biochimie 72 855862CrossRefGoogle ScholarPubMed
Benbadis, L., Garel, J. R. & Hartley, D. L. 1990 b SthT1: A new restriction endonuclease from Streptococcus thermophilus T, FEMS Microbiology Reviews 87 P64Google Scholar
Botstein, D. 1980 A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354 484491CrossRefGoogle ScholarPubMed
Boussemaer, J. P., Schrauwen, P. P., Sourrouille, J. L. & Guy, P. 1980 Multiple modification/restriction systems in lactic streptococci and their significance in defining a phage-typing system. Journal of Dairy Research 47 401409CrossRefGoogle ScholarPubMed
Chopin, A., Chopin, M. C., Moillo-Batt, A. & Langella, P. 1984 Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11 260263CrossRefGoogle ScholarPubMed
Daly, C. & Fitzgerald, G. 1987 Mechanisms of bacteriophage insensitivity in the lactic streptococci. In Streptococcal Genetics pp. 259268 (Eds Ferretti, J. J. and Curtis, R. III). Washington, DC: American Society for MicrobiologyGoogle Scholar
Davis, R. W. & Hyman, R. W. 1971 A study in evolution: the DNA base sequence homology between eoliphages T7 and T3. Journal of Molecular Biology 62 287301CrossRefGoogle ScholarPubMed
Duckworth, D. H., Glenn, J. & McCorquodale, D. J. 1981 Inhibition of bacteriophage replication by extrachromosomal genetic elements. Microbiological Reviews 45 5271CrossRefGoogle ScholarPubMed
Fitzgerald, G. F., Daly, C., Brown, L. R. & Gingeras, T. R. 1982 ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acids Research 10 81718179CrossRefGoogle Scholar
Froseth, B. R., Harlander, S. K. & McKay, L. L. 1988 Plasmid-mediated reduced phage sensitivity in Streptococcus lactis KR5. Journal of Dairy Science 71 275284CrossRefGoogle ScholarPubMed
Gautier, M. & Chopin, M. C. 1987 Plasmid-determined systems for restriction and modification activity and abortive infection in Streptococcus cremoris. Applied and Environmental Microbiology 53 923927CrossRefGoogle ScholarPubMed
Hill, C., Miller, L. A. & Klaenhammer, T. R. 1990 a Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Applied and Environmental Microbiology 56 22552258CrossRefGoogle ScholarPubMed
Hill, C., Miller, L. A. & Klaenhammer, T. R. 1990 b Molecular characterization of a type II methylase gene exchanged between pTR2030 and a virulent phage in lactococci. FEMS Microbiology Reviews 87 P62Google Scholar
Hill, C., Pierce, K. & Klaenhammer, T. R. 1989 b The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Applied and Environmental Microbiology 55 24162419CrossRefGoogle Scholar
Hill, C., Romero, D. A., McKenney, D. S., Finer, K. R. & Klaenhammer, T. R. 1989 a Localization, cloning, and expression of genetic determinants for baeteriophage resistance (Hsp) from the conjugative plasmid pTR2030. Applied and Environmental Microbiology 55 16841689CrossRefGoogle ScholarPubMed
Jarvis, A. W. & Klaenhammer, T. R. 1986 Baeteriophage resistance conferred on lactic streptococci by the conjugative plasmid pTR2030: effects on small isometric-, large isometric-, and prolate-headed phages. Applied and Environmental Microbiology 51 12721277CrossRefGoogle ScholarPubMed
Jarvis, A. W. & Meyer, J. 1986 Electron microscopic heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages. Applied and Environmental Microbiology 51 566571CrossRefGoogle ScholarPubMed
Josephsen, I. & Vogensen, F. K. 1989 Identification of three different plasmid-encoded restriction/modification systems in Streptococcus lactis subsp. cremoris W56. FEMS Microbiology Letters 59 161166CrossRefGoogle Scholar
Klaenhammer, T. R. 1987 Plasmid-directed mechanisms for bacteriophage defense in lactic streptococci. FEMS Microbiology Reviews 46 313325CrossRefGoogle Scholar
Klaenhammer, T. R. 1989 Genetic characterization of multiple mechanisms of phage defense from a prototype phage-insensitive strain, Lactococcus lactis ME2. Journal of Dairy Science 72 34293443CrossRefGoogle Scholar
Klaenhammer, T. R. & Sanozky, R. B. 1985 Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. Journal of General Microbiology 131 15311541Google ScholarPubMed
Krüger, D. H. & Bickle, T. A. 1983 Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiological Reviews 47 345360CrossRefGoogle ScholarPubMed
Larbi, D., Colmin, C., Rousselle, L., Decaris, B. & Simonet, J. M. 1990 Genetic and biological characterization of nine Streptococcus salivarius subsp. thermophilus bacteriophages. Lait 70 107116CrossRefGoogle Scholar
Marmur, J. 1961 A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3 208213CrossRefGoogle Scholar
Mercenier, A., Robert, C., Romero, D. A., Slos, P. & Lemoine, Y. 1987 Transfection of Streptococcus thermophilus spheroplasts. In Streptococcal Genetics. pp. 234237 (Eds Ferretti, J. J. and Curtis, R. III). Washington, DC: American Society for MicrobiologyGoogle Scholar
Neve, H., Krusch, U. & Teuber, M. 1990 Virulent and temperate bacteriophages of thermophilic lactic acid streptococci. FEMS Microbiology Reviews 87 P68Google Scholar
Roberts, R. J. 1985 Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research 13 (Suppl.) r165–r200CrossRefGoogle ScholarPubMed
Sanders, M. E. 1988 Phage resistance in lactic acid bacteria. Biochimie 70 411421CrossRefGoogle ScholarPubMed
Sanders, M. E. & Klaenhammer, T. R. 1984 Phage resistance in a phage-insensitive strain of Streptococcus lactis: temperature-dependent phage development and host-controlled phage replication. Applied and Environmental Microbiology 47 979985CrossRefGoogle Scholar
Sanders, M. E., Leonhard, P. J., Sing, W. D. & Klaenhammer, T. R. 1986 A conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Applied and Environmental Microbiology 52 10011007CrossRefGoogle ScholarPubMed
Schneider, J., Aguilera Garcia, I. & Kutzner, H. J. 1987 Characterization of a family of temperate actinophages of Faenia rectivirgula. Journal of General Microbiology 133 22632268Google Scholar
Sing, W. D. & Klaenhammer, T. R. 1986 Conjugal transfer of bacteriophage resistance determinants on pTR2030 to Streptococcus cremoris strains. Applied and Environmental Microbiology 51 12641271CrossRefGoogle ScholarPubMed
Sing, W. D. & Klaenhammer, T. R. 1990 Characteristics of phage abortion conferred in lactococci by the conjugal plasmid pTR2030. Journal of General Microbiology 136 18071815CrossRefGoogle Scholar
Solaiman, D. K. Y. & Somkuti, G. A. 1990 Isolation and characterization of a type II restriction endonuclease from Streptococcus thermophilus. FEMS Microbiology Letters 67 261266CrossRefGoogle Scholar
Somkuti, G. A. & Steinberg, D. H. 1986 Distribution and analysis of plasmids in Streptococcus thermophilus. Journal of Industrial Microbiology 1 157163CrossRefGoogle Scholar
Steenson, L. R. & Klaenhammer, T. R. 1985 Streptococcus cremoris M12R transoonjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Applied and Environmental Microbiology 50 851858CrossRefGoogle ScholarPubMed
Tekzaghi, B. E. & Sandine, W. E. 1975 Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology 29 807813CrossRefGoogle Scholar