Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T19:40:27.374Z Has data issue: false hasContentIssue false

Dephosphorylation of bovine casein by milk alkaline phosphatase

Published online by Cambridge University Press:  01 June 2009

D. Lorient
Affiliation:
Service de Biochimie Appliquée, Université de Nancy 1, C.O. 140 F.54037 Nancy, France
G. Linden
Affiliation:
Service de Biochimie Appliquée, Université de Nancy 1, C.O. 140 F.54037 Nancy, France

Summary

The pH of optimum activity of alkaline phosphatase from cow's milk depended on the substrate, being 10·1 for p-nitrophenylphosphate, 8·6 for phosphoserine, 8·0 for phosvitin and 6·8 for casein. Individual casein components were dephosphorylated more rapidly than mixtures of αs- and β-caseins or of αs-, β- and κ-caseins and micellar casein. Mixtures of 2 components involving κ-casein were more readily dephosphorylated than αs- and β-casein mixtures. At pH 6·8, lactose, whey proteins and phosphate ions had an inhibitory effect. β-Lactoglobulin had an inhibitory effect only when the pH of the reaction was lower than the optimum pH value of the enzyme. Mg2+ and Zn2+ were not inhibitory. The optimum conditions for dephosphorylation of casein are described.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ando, K., Yusa, K. & Yasui, T. (1970). Japanese Journal of Zootechnical Science 41, 113.Google Scholar
Aschaffenburg, R. (1963). Journal of Dairy Research 30, 259.CrossRefGoogle Scholar
Delsal, J. L. & Manhouri, H. (1958). Bulletin de la Société de Chimie Biologique 40, 1623.Google Scholar
Dickson, I. R. & Perkins, D. J. (1971). Biochemical Journal 124, 235.Google Scholar
Farrell, H. M. Jr & Thompson, M. P. (1971). Journal of Dairy Science 54, 1219.CrossRefGoogle Scholar
Fernley, H. N. (1971). In The Enzymes, 4, 417. (Ed. Boyer, P. D..) New York: Academic Press.Google Scholar
Hofman, T. (1968). Biochemical Journal 69, 139.Google Scholar
Jenness, R. & Koops, J. (1962). Netherlands Milk and Dairy Journal 16, 153.Google Scholar
Linden, G., Mazeron, P., Michalowski, J. B. & Alais, C. (1974 a). Biochimica et Biophysica Acta 358, 82.CrossRefGoogle Scholar
Linden, G., Michalowski, J. B. & Alais, C. (1974 b). 19th International Dairy Congress, New Delhi 1E, 332.Google Scholar
Mercier, J. C., Maubois, J. L., Poznanski, S. & Ribadeau-dumas, B. (1968). Bulletin de la Société de Chimie Biologique 50, 521.Google Scholar
Pepper, L. & Thompson, M. P. (1965). Journal of Dairy Science 46, 764.CrossRefGoogle Scholar
Reynolds, J. A. & Schlesinger, M. J. (1967). Biochemistry 6, 3552.Google Scholar
Ribadeau Dumas, B. & Garnier, J. (1970). Journal of Dairy Research 37, 269.CrossRefGoogle Scholar
Rose, D. (1965). Journal of Dairy Science 48, 139.CrossRefGoogle Scholar
Sawyer, W. H., Coulter, S. T. & Jenness, R. (1963). Journal of Dairy Science 46, 564.CrossRefGoogle Scholar
Sharma, R. S. & Ganguli, N. C. (1970). Indian Journal of Biochemistry 7, 285.Google Scholar
Thompson, M. P. & Kiddy, C. A. (1964). Journal of Dairy Science 47, 626.CrossRefGoogle Scholar
Whikehart, D. R. & Rafter, G. W. (1970). Journal of Dairy Science 53, 1171.CrossRefGoogle Scholar
Yamauchi, K., Takemoto, S. & Tsugo, T. (1967). Agricultural and Biological Chemistry 31, 54.CrossRefGoogle Scholar
Zittle, C. A. & Bingham, E. W. (1959). Journal of Dairy Science 42, 1772.CrossRefGoogle Scholar
Zittle, C. A., Thompson, M. P., Custer, J. H. & Cerbulis, J. (1962). Journal of Dairy Science 45, 807.CrossRefGoogle Scholar