Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T03:56:26.976Z Has data issue: false hasContentIssue false

Contribution of rennet and starter proteases to proteolysis in Cheddar cheese

Published online by Cambridge University Press:  01 June 2009

R. B. O'Keeffe
Affiliation:
Departments of Food Chemistry and Microbiology, University College, Cork, Irish Republic
P. F. Fox
Affiliation:
Departments of Food Chemistry and Microbiology, University College, Cork, Irish Republic
C. Daly
Affiliation:
Departments of Food Chemistry and Microbiology, University College, Cork, Irish Republic

Summary

Proteolysis in aseptic, chemically acidified (GDL) cheese and in starter cheese made under controlled bacteriological conditions (i.e. free of non-starter micro-organisms) was measured by gel electrophoresis, the formation of pH 4·6- and 12% TCA-soluble N, gel filtration and the liberation of free amino acids. The results show that rennet was mainly responsible for the level of proteolysis detected by gel electrophoresis, pH 4·6-soluble N and gel filtration i.e. large, medium and small peptides. However, rennet alone was capable of producing only a limited range of free amino acids; only methionine, histidine, glycine, serine and glutamic acid were produced at quantifiable levels (> 0·2 μmoles/g) in GDL cheese; it is suggested that free amino acids in Cheddar cheese are mainly the result of microbial peptidase activity. The levels of free amino acids in the starter cheese were considerably lower than values reported for commercial Cheddar.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Association of Official Analytical Chemists (1970). Official Methods of Analysis, 11th Edn.Washington, D.C.: A.O.A.C.Google Scholar
Block, R. J. (1951). Journal of Dairy Science 34, 1.CrossRefGoogle Scholar
Bullock, D. H. & Irvine, O. R. (1956). Journal of Dairy Science 39, 1229.CrossRefGoogle Scholar
Creamer, L. K. (1971). New Zealand Journal of Dairy Science & Technology 6, 91.Google Scholar
Creamer, L. K., Mills, O. E. & Richards, E. L. (1971). Journal of Dairy Research 38, 269.CrossRefGoogle Scholar
Creamer, L. K. & Richardson, B. C. (1974). New Zealand Journal of Dairy Science and Technology 9, 9.Google Scholar
Delfour, A., Jolles, J., Alais, C. & Jolles, P. (1965). Biochemical and Biophysical Research Communications 19, 452.CrossRefGoogle Scholar
Foster, P. M. D. & Green, M. L. (1974). Journal of Dairy Research 41, 259.CrossRefGoogle Scholar
Fox, P. F. (1963). Journal of Dairy Science 46, 744.CrossRefGoogle Scholar
Fox, P. F. & Guiney, J. (1973). Journal of Dairy Research 40, 229.CrossRefGoogle Scholar
Fox, P. F. & Walley, B. F. (1971). Journal of Dairy Research 38, 165.CrossRefGoogle Scholar
Green, M. L. & Foster, P. M. D. (1974). Journal of Dairy Research 41, 269.CrossRefGoogle Scholar
Guiney, J. (1973).Thesis.National University of Ireland.Google Scholar
Harper, W. J. & Swanson, A. M. (1948). Journal of Dairy Science 3, 715.Google Scholar
Harper, W. J. & Swanson, A. M. (1949). 12th International Dairy Congress, Stockholm 2, 147.Google Scholar
Kosikowsky, F. V. (1951). Journal of Dairy Science 34, 235.CrossRefGoogle Scholar
Kristoffersen, T. & Harper, W. J. (1966). 17th International Dairy Congress, Munich D 297.Google Scholar
Ledford, R. A., Chen, J. H. & Nath, K. R. (1968). Journal of Dairy Science 51, 792.CrossRefGoogle Scholar
Ledford, R. A., O'Sullivan, A. C. & Nath, K. R. (1966). Journal of Dairy Science 49, 1098.CrossRefGoogle Scholar
Lindqvist, B., Storgårds, T. & Göransson, M. B. (1953). 13th International Dairy Congress, The Hague 3, 1254.Google Scholar
Lowrie, R. J. & Lawrence, R. C. (1972). New Zealand Journal of Dairy Science and Technology 7, 51.Google Scholar
Mabbitt, L. A. (1955). Journal of Dairy Research 22, 224.CrossRefGoogle Scholar
Mabbitt, L. A. (1961). Journal of Dairy Research 28, 303.CrossRefGoogle Scholar
Mabbitt, L. A., Chapman, H. R. & Berridge, N. J. (1955). Journal of Dairy Research 22, 365.CrossRefGoogle Scholar
Manning, D. J. (1974). Journal of Dairy Research 41, 81.CrossRefGoogle Scholar
Melachouris, N. P. & Tuckey, S. L. (1964). Journal of Dairy Science 47, 1.CrossRefGoogle Scholar
Mulder, H. (1952). Netherlands Milk and Dairy Journal 6, 157.Google Scholar
Nath, K. R. & Ledford, R. A. (1973). Journal of Dairy Science 56, 710.CrossRefGoogle Scholar
Ohmiya, K. & Sato, Y. (1968). Agricultural and Biological Chemistry 32, 291.Google Scholar
Ohmiya, K. & Sato, Y. (1972). Milchwissenschaft 27, 417.Google Scholar
O'keeffe, R. B., Fox, P. F. & Daly, C. (1975 a). Journal of Dairy Research 42, 111.CrossRefGoogle Scholar
O'keeffe, R. B., Fox, P. F. & Daly, C. (1975 b). Irish Journal of Agricultural Research (In press).Google Scholar
O'leary, P. A. & Fox, P. F. (1974). Journal of Dairy Research 41, 381.CrossRefGoogle Scholar
Pelissier, J. P., Mercier, J. C. & Ribadeau Dumas, B. (1974). Annales de Biologie Animale, Biochimie, Biophysique 14, 343.CrossRefGoogle Scholar
Phelan, J. A., Guiney, J. & Fox, P. F. (1973). Journal of Dairy Research 40, 105.CrossRefGoogle Scholar
Reiter, B., Sorokin, Y., Pickering, A. & Hall, A. J. (1969). Journal of Dairy Research 36, 65.CrossRefGoogle Scholar
Sullivan, R. A. & Infantino, D. G. (1969). Journal of Dairy Science 52, 761.CrossRefGoogle Scholar
Thompson, M. P., Kiddy, C. A., Johnston, J. O. & Weinberg, R. M. (1964). Journal of Dairy Science 47, 378.CrossRefGoogle Scholar
Yamamoto, T. & Yoshitake, M. (1962). 16th International Dairy Congress, Copenhagen B 395.Google Scholar