Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T17:08:25.388Z Has data issue: false hasContentIssue false

The composition of whole casein from the milk of Ayrshire cows

Published online by Cambridge University Press:  01 June 2009

D. T. Davies
Affiliation:
The Hannah Research Institute, Ayr, Scotland, KA6 5HL
A. J. R. Law
Affiliation:
The Hannah Research Institute, Ayr, Scotland, KA6 5HL

Summary

The composition of whole casein of 5 herd-bulk and 42 individual-cow milks from a single herd of Ayrshire cows has been determined. The percentage composition of the herd-bulk samples varied relatively little over a period of more than a year with the whole casein consisting on average of 38·4 % αs1,0-casein, 36·5 % β-casein, 12·5 % κ-casein, 10·5 % minor αs-caseins and 2·1 % γ-casein. For the individual-cow samples from mid-lactation, casein composition also was relatively constant, but in early and late lactation composition varied more with the relative amount of β-casein often being lower and those of κ- and γ-caseins often higher than in mid-lactation, these differences tending to be more marked in samples from older cows. Stage of lactation appeared to have little effect on the relative amounts of αs1,0-and minor αs-caseins.

The concentrations of all casein fractions were significantly positively correlated (P < 0·001) with the concentration of whole casein in the milk. Also, there were significant negative correlations (P < 0·001) between the percentages of whole casein present as β- and κ-caseins, β- and γ-caseins and minor αs- and γ-caseins, and a significant positive correlation (P < 0·001) between the relative amounts of κ- and γ-caseins. The relative amount of the major αs1,0-casein fraction, however, was not closely related to those of any of the other fractions.

Generally, milks with high lactose and low Na values yielded casein which was comparatively rich in β-casein and comparatively poor in κ- and γ-caseins.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aschaffenburg, R. (1968). Journal of Dairy Research 35, 447.CrossRefGoogle Scholar
Aschaffenburg, R. & Drewsy, J. (1957). Nature 180, 376.CrossRefGoogle Scholar
Davies, D. T. & Law, A. J. R. (1977). Journal of Dairy Research 44, 213.CrossRefGoogle Scholar
Dill, C. W., McGill, R., Lane, G. T., Bryant, J. N. & Thompson, Y. (1972). Journal of Dairy Science 55, 200.CrossRefGoogle Scholar
El-Negoumy, A. M. (1976). Journal of Dairy Science 59, 153.CrossRefGoogle Scholar
Farrell, H. M. Jr, (1973). Journal of Dairy Science 56, 1195.CrossRefGoogle Scholar
Farrell, H. M. Jr, & Thompson, M. P. (1974). In Fundamentals of Dairy Chemistry, 2nd edn, p. 464. (Eds Webb, B. H., Johnson, A. H. and Alford, J. A.) Westport, Conn.: Avi Publishing Co.Google Scholar
Grimbleby, F. H. (1956). Journal of Dairy Research 23, 229.CrossRefGoogle Scholar
Groves, M. L., Gordon, W. G., Kalan, E. B. & Jones, S. B. (1973). Journal of Dairy Science 56, 558.CrossRefGoogle Scholar
Guérin, J., Alais, C., Jollès, J. & Jollès, P. (1974). Biochimica et Biophysica Acta 351, 325.CrossRefGoogle Scholar
Haenlein, G. F. W., Schultz, L. H. & Zikakis, J. P. (1973). Journal of Dairy Science 56, 1017.CrossRefGoogle Scholar
Kaminogawa, S. & Yamauchi, K. (1972). Agricultural and Biological Chemistry 36, 255.Google Scholar
Kaminogawa, S. & Yamauchi, K. (1974). Agricultural and Biological Chemistry 38, 2343.Google Scholar
Larson, B. L. & Kendall, K. A. (1957). Journal of Dairy Science 40, 377.CrossRefGoogle Scholar
Manson, W., Carolan, T. & Annan, W. D. (1977). European Journal of Biochemistry (in the Press).Google Scholar
Mikolajcik, E. M. (1968). Journal of Dairy Science 51, 457.CrossRefGoogle Scholar
Morr, C. V., Lin, S. H. C. & Josephson, R. V. (1971). Journal of Dairy Science 54, 994.CrossRefGoogle Scholar
Noomen, A. (1975). Netherlands Milk and Dairy Journal 29, 153.Google Scholar
Parry, R. M. Jr (1974). In Fundamentals of Dairy Chemistry, 2nd edn, p. 606. (Eds Webb, B. H., Johnson, A. H. and Alford, J. A.) Westport, Conn: Avi Publishing Co.Google Scholar
Randolph, H. E., Erwin, R. E. & Richter, R. L. (1974). Journal of Dairy Science 57, 15.CrossRefGoogle Scholar
Reimerdes, E. H. & Klostermeyer, H. (1974). Milchwissenschaft 29, 517.Google Scholar
Ribadeau-Dumas, B. & Veaux, M. (1964). Journal of Dairy Research 31, 189.CrossRefGoogle Scholar
Richardson, B. C. & Creamer, L. K. (1976). New Zealand Journal of Dairy Science and Technology 11, 46.Google Scholar
Rollebi, G. D., Larson, B. L. & Touchberry, R. W. (1965). Journal of Dairy Science 39, 1683.CrossRefGoogle Scholar
Rose, D., Davies, D. T. & Yaguchi, M. (1969). Journal of Dairy Science 52, 8.CrossRefGoogle Scholar
Rowland, S. J. (1938). Journal of Dairy Research 9, 42.CrossRefGoogle Scholar
Sweetsur, A. W. M. (1971). Thesis, University of Strathclyde.Google Scholar
Yaguchi, M., Davies, D. T. & Kim, Y. K. (1968). Journal of Dairy Science 51, 473.CrossRefGoogle Scholar