Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T19:30:14.620Z Has data issue: false hasContentIssue false

A comparison between the amino acid compositions of 2 chymosin-sensitive polypeptides and C-terminal segments of κ-casein

Published online by Cambridge University Press:  01 June 2009

R. Beeby
Affiliation:
Dairy Research Laboratory, Division of Food Research, C.S.I.R.O., Highett, Victoria, Australia

Summary

Two distinct types of chymosin-sensitive polypeptide were found in the soluble fraction obtained when a solution of crude κ-casein in 0·4 m-NaCl was adjusted to pH 3. One corresponded to a segment of κ-casein comprising residues 94–169. The other was very similar to the section Gln77-Val169 in the protein, but contained a phosphate group plus isoleucine and glycine in the region between the N-terminus and the chymosin-sensitive bond. If these polypeptides form as a result of a specific cleavage of κ-casein, the data indicate that there is a variant of this protein with a number of amino acid replacements on the N-terminal side of the chymosin-sensitive bond. The shorter polypeptide and κ-casein are both rapidly cleaved by chymosin at pH 6·7 which suggests that the contribution of residues 1–93 to the sensitivity of the Phe-Met bond in κ-casein is a minor one.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beeby, R. (1965). Journal of Dairy Research 32, 57.CrossRefGoogle Scholar
Beeby, R. (1966). 17th International Dairy Congress, Munich B 99.Google Scholar
Beeby, R. (1970). Biochimica et Biophysica Acta 214, 364.CrossRefGoogle Scholar
Beeby, R. & Mocquot, G. (1969). Biochimica et Biophysica Acta 175, 430.CrossRefGoogle Scholar
Brenner, M., Niederwieser, A. & Pataki, G. (1965). In Thin-Layer Chromatography, p. 430. (Ed. Stahl, E..) Berlin: Springer-Verlag.Google Scholar
Delfour, A., Jollés, J., Alais, C. & Jollès, P. (1965). Biochemical and Biophysical Research Communications 19, 452.CrossRefGoogle Scholar
Determann, H. & Michel, W. (1966). Journal of Chromatography 25, 303.CrossRefGoogle Scholar
Jollès, J., Alais, C. & Jollès, P. (1968). Biochimica et Biophysica Acta 168, 591.CrossRefGoogle Scholar
Mackinlay, A. G. & Wake, R. G. (1965). Biochimica et Biophysica Acta 104, 167.CrossRefGoogle Scholar
Mercier, J-C., Brignon, G. & Ribadeac-Dcmas, B. (1973). European Journal of Biochemistry 35, 222.CrossRefGoogle Scholar
Mercier, J-C., Grosclaude, F. & Ribadeau-Dumas, B. (1972). Milchwissenschaft 27, 402.Google Scholar
Opieńska-blauth, J., Charezinski, M. & Berbec, H. (1963). Analytical Biochemistry 6, 69.CrossRefGoogle Scholar
Pelc, S. R. (1965). Nature 207, 597.CrossRefGoogle Scholar
Rosmus, J. & Deyl, Z. (1972). Journal of Chromatography 70, 221.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analytical Chemistry 30, 1190.CrossRefGoogle Scholar
Sumner, J. B. (1944). Science 100, 413.CrossRefGoogle Scholar