Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T07:55:14.805Z Has data issue: false hasContentIssue false

The colloidal phosphate of milk: II. Influence of citrate

Published online by Cambridge University Press:  01 June 2009

G. T. Pyne
Affiliation:
Dairy Chemistry Department, University College, Cork
T. C. A. McGann
Affiliation:
Dairy Chemistry Department, University College, Cork

Summary

A new method for determining the composition of the colloidal phosphate of milk has been developed, based on analysis of milk free from colloidal phosphate. Preparation of this material is described.

The results suggest that the so-called colloidal calcium phosphate of milk should be more properly described as a colloidal phosphate—citrate.

This colloidal phosphate—citrate shows considerable analytical resemblance to the precipitate formed on neutralizing acidified milk serum. Both can be represented approximately by the empirical formula of a hypothetical citrate apatite.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Edmonson, L. F. & Tarassuk, N. P. (1956). J. Dairy Sci. 39, 123.CrossRefGoogle Scholar
Eilers, H. (1947). Chemical and Physical Investigations on Dairy Products; The Colloid Chemistry of Skim Milk. Amsterdam: Elsevier.Google Scholar
Evenhuis, N. & de Vries, Th. R. (1956 a). Ned. melk- en Zuiveltijdschr. 10, 1.Google Scholar
Evenhuis, N. & de Vries, Th. R. (1956 b). Ned. melk- en Zuiveltijdschr. 10, 180.Google Scholar
Evenhuis, N. & de Vries, Th. R. (1957). Ned. melk- en Zuiveltijdschr. 11, 111.Google Scholar
Ford, T. F., Ramsdell, G. A. & Landsman, S. G. (1955). J. Dairy Sci. 38, 843.CrossRefGoogle Scholar
Kuyper, A. C. (1938). J. biol. Chem. 123, 405.CrossRefGoogle Scholar
Lampitt, L. H., Bushill, J. H. & Filmer, D. F. (1937). Biochem. J. 31, 1861.CrossRefGoogle Scholar
Lees, H. & Kuyper, A. C. (1957). J. biol. Chem. 225, 641.CrossRefGoogle Scholar
Marier, J. R. & Boulet, M. (1958). J. Dairy Sci. 41, 1683.CrossRefGoogle Scholar
Pyne, G. T. (1940). J. Dairy Res. 11, 292.CrossRefGoogle Scholar
Pyne, G. T. (1958). J. Dairy Res. 25, 467.CrossRefGoogle Scholar
Pyne, G. T. & Ryan, J. J. (1950). J. Dairy Res. 17, 200.CrossRefGoogle Scholar
Reinart, A. & Nesbitt, J. M. (1957). J. Dairy Sci. 40, 1645.CrossRefGoogle Scholar
ter Horst, Maria G. (1947). Ned. melk- en Zuiveltijdschr. 1, 137.Google Scholar
Tessier, H. & Rose, D. (1958). J. Dairy Sci. 41, 351.CrossRefGoogle Scholar
van der Have, A. J. (1954). Ned. melk- en Zuiveltijdschr. 8, 157.Google Scholar
Verma, I. S. & Sommer, H. H. (1957). J. Dairy Sci. 50, 331.CrossRefGoogle Scholar
von Hippel, P. H. & Waugh, D. F. (1955). J. Amer. chem. Soc. 77, 4311.CrossRefGoogle Scholar
White, J. C. D. & Davies, D. T. (1958). J. Dairy Res. 25, 236.CrossRefGoogle Scholar