Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T11:38:05.829Z Has data issue: false hasContentIssue false

Characterization of lactococci and lactobacilli isolated from semihard goats' cheese

Published online by Cambridge University Press:  01 June 2009

Teresa Requena
Affiliation:
Instituto del Frío (CSIC), Ciudad Universitaria, 28040 Madrid, Spain
Carmen Peláez
Affiliation:
Instituto del Frío (CSIC), Ciudad Universitaria, 28040 Madrid, Spain
Michel J. Desmazeaud
Affiliation:
Station des Recherches Laitières (INRA), Domaine de Vilvert, 78350 Jouy-en-Josas, France

Summary

Several strains of Lactococcus lactis subsp. lactis, Lactobacillus casei and Lactobacillus plantarum isolated from traditional goats' cheese have been studied for titratable acidity, proteolysis in milk and enzymic activities. Aminopeptidasc activities were measured with whole cells and cells permeabilized with Triton X-100. Caseinolytic activity was investigated using electrophoresis in polyacrylamide gel with sodium dodecyl sulphate. Lc. lactis subsp. lactis had a level of proteolytic activity in skim milk greater than that of Lb. casei, while this activity in Lb. plantarum was very low. Alanine aminopeptidase activity was almost non-existent for all strains tested, while lysine aminopeptidase activity appeared to be of fundamentally intracellular origin. Leucine aminopeptidase activity was also greater in cells that had been permeabilized than in whole cells for Lb. casei and Lb. plantarum. Lc. lactis subsp. lactis leucine aminopeptidase activity was greater in whole cells. No significant hydrolysis of casein was found with Lb. casei I FPL 725 and Lb. plantarum IFPL 722 permeabilized with Triton X-100 after 24 h incubation with whole bovine casein.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boquien, C. Y., Desmazeaud, M. J. & Corrieu, G. 1989 [Characterization of an aminopeptidase of Streptococcus cremoris AM2 and an α-galactosidase of Leuconostoc lactis CNRZ 1091.] Lait 69 7181CrossRefGoogle Scholar
Citti, J. E., Sandine, W. E. & Elliker, P. R. 1963 Some observations on the Hull method for measurement of proteolysis in milk. Journal of Dairy Science 46 337CrossRefGoogle Scholar
Deeth, H. C. & Fitz-Gerald, C. H. 1975 Factors governing the susceptibility of milk to spontaneous lipolysis. International Dairy Federation Annual Bulletin Document 86 2434Google Scholar
El Soda, M., Bergère, J. L. & Desmazeaud, M. J. 1978 Detection and localization of peptide hydrolases in Lactobacillus casei. Journal of Dairy Research 45 519524CrossRefGoogle ScholarPubMed
El Soda, M., Desmazeaud, M. J., Le Bars, D. & Zevaco, C. 1986 Cell-wall-assoeiated proteinases in Lactobacillits casei and Lactobacillus plantarum. Journal of Food Protection 49 361365CrossRefGoogle ScholarPubMed
El Soda, M., Said, H., Desmazeaud, M. J., Mashaly, R. & Ismail, A. 1983 The intracellular peptide-hydrolases of Lactobacillus plantarum. Comparison with Lactobacillus casei. Lait 63 114CrossRefGoogle Scholar
Exterkate, F. A. 1984 Location of peptidases outside and inside the membrane of Streptococcus cremoris. Applied and Environmental Microbiology 47 177183CrossRefGoogle ScholarPubMed
Fontecha, J., Peláez, C., Juárez, M., Requena, T., Gómez, C. & Ramos, M. 1990 Biochemical and microbiological characteristics of artisanal hard goat's cheese. Journal of Dairy Science 73 11501157CrossRefGoogle Scholar
Fryer, T. F., Reiter, B. & Lawrence, R. C. 1967 Lipolytic activity of lactic acid bacteria. Journal of Dairy Science 50 388389CrossRefGoogle Scholar
Gómez, R., Peláez, C. & De La Torre, E. 1989 Microbiological study of semi-hard goat's milk cheese (Majorero). International Journal of Food Science and Technology 24 147151CrossRefGoogle Scholar
Gómez, R., Peláez, C. & Martín-Hernández, C. 1988 Enzyme activity in Spanish goat's cheeses. Food Chemistry 28 159165CrossRefGoogle Scholar
Hill, S. H. A. & Gasson, M. J. 1986 A qualitative screening procedure for the detection of casein hydrolysis by bacteria, using sodium dodecyl sulphate polyacrylamide gel electrophoresis. Journal of Dairy Research 53 625629CrossRefGoogle Scholar
Hull, M. E. 1947 Studies on milk proteins. II. Colorimetric determination of the partial hydrolysis of the proteins in milk. Journal of Dairy Science 30 881884CrossRefGoogle Scholar
International Dairy Federation 1980 Factors affecting the results of an activity test of mesophilic cheese starters. International Dairy Federation Bulletin Document 129 512Google Scholar
Kolstad, J. & Law, U. A. 1985 Comparative peptide specificity of cell wall, membrane and intracellular peptidases of group N streptococci. Journal of Applied Bacteriology 58 449455CrossRefGoogle ScholarPubMed
Laemmli, U. K. & Favre, M. 1973 Maturation of the head of bacteriophage T4. I. DNA packaging events. Journal of Molecular Biology 80 575599CrossRefGoogle ScholarPubMed
Law, B. A. 1979 Extracellular peptidases in group N streptococci used as cheese starters. Journal of Applied Bacteriology 46 455463CrossRefGoogle Scholar
Law, B. A. & Kolstad, J. 1983 Proteolytic systems in lactic acid bacteria. Antonie, van Leeuwenhoek Journal of Microbiology 49 225245Google ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951 Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193 265275CrossRefGoogle ScholarPubMed
Marshall, V. M. E. & Law, B. A. 1984 The physiology and growth of dairy lactic-acid bacteria. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, pp. 6798 (Eds Davies, F. L. and Law, B. A.). London: Elsevier Applied Science PublishersGoogle Scholar
Mills, O. K. & Thomas, T. D. 1978 Release of cell wall-associated proteinase(s) from lactic streptococci. New Zealand Journal of Dairy Science and Technology 13 209215Google Scholar
Miozzari, G. F., Niederberger, P. & Hütter, R. 1978 Permeabilization of microorganisms by Triton X-100. Analytical Biochemistry 90 220233CrossRefGoogle ScholarPubMed
Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T. & Yura, T. 1981 Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. Journal of Bacteriology 148 6471CrossRefGoogle ScholarPubMed
Nuñez, M., Martínez-Moreno, J. L. & Medina, M. 1981 [Testing of Streptococcus lactis as starter for the manufacture of Manchego-type cheese.] Anales del Instituto Nacional de Investigaciones Agrarias. Serie: Ganadera No. 12 6572Google Scholar
Premi, L., Sandine, W. E. & Elliker, P. R. 1972 Lactose-hydrolyzing enzymes of Lactobacillus species. Applied Microbiology 24 5157CrossRefGoogle ScholarPubMed
Stadhouders, J. 1986 The control of cheese starter activity. Netherlands Milk and Dairy Journal 40 155173Google Scholar
Stadhouders, J. & Veringa, H. A. 1973 .Fat hydrolysis by lactic acid bacteria in cheese. Netherlands Milk and Dairy Journal 27 7791Google Scholar
Suárez, J. A., Ramos, M. & Iñigo, B. 1983 [Exocellular enzymatic activities of Lactobacillus plantarum and Lactobacillus casei.] Revista Española de Lechería No. 129 163170Google Scholar
Thomas, T. D. & Pritchard, G. G. 1987 Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 46 245268CrossRefGoogle Scholar
Timmons, P., Hurley, M., Drinan, P., Daly, C. & Cogan, T. M. 1988 Development and use of adefined strain starter system for Cheddar cheese. Journal of the Society of Dairy Technology 41 4953CrossRefGoogle Scholar
Wang, C.-S. & Smith, R. L. 1975 Lowry determination of protein in the presence of Triton X-100. Analytical Biochemistry 63 414417CrossRefGoogle ScholarPubMed