Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T17:22:28.909Z Has data issue: false hasContentIssue false

Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation

Published online by Cambridge University Press:  01 June 2009

Lotte B. Larsen
Affiliation:
Protein Chemistry Laboratory, University of Aarhus, Science Park, DK-8000 Aarhus C, Denmark
Connie Benfeldt
Affiliation:
MD Foods Research and Development Centre, Rørdrumvej 2, DK-8220 Brabrand, Denmark
Lone K. Rasmussen
Affiliation:
Protein Chemistry Laboratory, University of Aarhus, Science Park, DK-8000 Aarhus C, Denmark
Torben E. Petersen
Affiliation:
Protein Chemistry Laboratory, University of Aarhus, Science Park, DK-8000 Aarhus C, Denmark

Summary

Cathepsin D is an indigenous aspartic proteinase in bovine milk. By competitive enzyme-linked immunosorbent assay the amount of immunoreactive cathepsin D and procathepsin D in bovine skim milk was estimated to be 0·4 μg/ml. Immunoreactive cathepsin D purified from whey consisted of a small fraction of mature cathepsin D, but the major form was the proenzyme procathepsin D. A preparation of bovine milk procathepsin D was, like mature cathepsin D, able to degrade purified αs1-, αs2-, β- and κ-casein and α-lactalbumin, while β-lactoglobulin was resistant to cleavage. The cleavage sites in these proteins were determined and compared with those of chymosin. Cathepsin D was capable of generating the αs1-I, β-I, β-II and β-III fragments originally described from the action of chymosin on the respective caseins, and these fragments were subjected to further proteolysis. Cathepsin D was also able to liberate the caseinomacropeptide from purified κ-casein, and to coagulate bovine skim milk. This demonstrated that milk contains an indigenous coagulation enzyme present mainly in the whey fraction.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, A. J. 1977 Human cathepsin D. In Acid Proteases: Structure and Biology, pp. 291300 (Ed. Tang, J.). New York: Plenum Press (Advances in Experimental Medicine and Biology no. 95)CrossRefGoogle Scholar
Benfeldt, C., Larsen, L. B., Rasmussen, J. T., Andreasen, P. A. & Petersen, T. E. 1995 Isolation and characterization of plasminogen and plasmin from bovine milk. International Dairy Journal 5 577592CrossRefGoogle Scholar
Capony, F., Rouoeot, C., Montcourrier, P., Cavailies, V., Salazar, G. & Rochefort, H. 1989 Increased secretion, altered processing, and glyeosylation of procathepsin D in human mammary cancer cells. Cancer Research 49 39043909Google Scholar
Conner, G. E. 1989 Isolation of procathepsin D from mature cathepsin D by pepstatin affinity chromatography. Autocatalytic proteolysis of the zymogen form of the enzyme. Biochemical Journal 263 601604CrossRefGoogle ScholarPubMed
Conner, G. E. & Richo, G. 1992 Isolation and characterization of a stable activation intermediate of the lvsosoinal aspartyl protease cathepsin D. Biochemistry 31 11421147CrossRefGoogle ScholarPubMed
Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Harwalkar, V. R., Jenness, R. & Whitney, R. McL. 1984 Nomenclature of proteins of cow's milk: fifth revision. Journal of Dairy Science 67 15991631CrossRefGoogle Scholar
Erickson, A. H., Conner, G. E. & Blobel, G. 1981 Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D. Journal of Biological Chemistry 256 1122411231CrossRefGoogle ScholarPubMed
Foltmann, B. 1959 On the enzymatic and the coagulation stages of the rennetting process. Proceedings 15th International Dairy Congress 2 655661Google Scholar
Fox, P. F. 1981 Proteinases in dairy technology. Netherlands Milk and Dairy Journal 35 233253Google Scholar
Fox, P. F. & Stepaniak, L. 1993 Enzymes in cheese technology. International Dairy Journal 3 509530CrossRefGoogle Scholar
Grufferty, M. B. & Fox, P. F. 1988 Review article. Milk alkaline proteinase. Journal of Dairy Research 55 609630CrossRefGoogle ScholarPubMed
Guillou, H., Miranda, G. & Pelissier, J. -P. 1991 Hydrolysis of β-casein by gastric proteases. I. Comparison of proteolytic action of bovine chymosin and pepsin A. International Journal ofPeptide and Protein Research 37 494501CrossRefGoogle ScholarPubMed
Hasilik, A. & Neufeld, E. F. 1980 Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. Journal of Biological Chemistry 255 49374945CrossRefGoogle ScholarPubMed
Hill, R. D., Lahav, E. & Givol, D. 1974 A rennin-sensitive bond in αs1 B-casein. Journal of Dairy Research 41 147153CrossRefGoogle ScholarPubMed
Kaminogawa, S. & Yamauchi, K. 1972 Acid protease of bovine milk. Agricultural and Biological Chemistry 36 23512356CrossRefGoogle Scholar
Kaminogawa, S., Yamauchi, K., Miyazawa, S. & Kooa, Y. 1980 Degradation of casein components by acid protease of bovine milk. Journal of Dairy Science 63 701704CrossRefGoogle Scholar
Korycka-Dahl, M., Ribadeau-Dumas, B., Chene, N. & Martal, J. 1983 Plasmin activity in milk. Journal of Dairy Science 66 704711CrossRefGoogle Scholar
Larsen, L. B., Boisen, A. & Petersen, T. E. 1993 Procathepsin D cannot autoactivate to cathepsin D at acid pH. FEBS Letters 319 5458CrossRefGoogle ScholarPubMed
Larsen, L. B. & Petersen, T. E. 1995 Identification of five molecular forms of cathepsin D in bovine milk. In Aspartic Proteinases: Structure, Function, Biology, and Biomedical Implications (Ed. Takahashi, K.). New York: Plenum Press (Advances in Experimental Medicine and Biology no. 362)Google Scholar
McSweeney, P. L. H., Olson, N. F., Fox, P. F., Healy, A. & Højrup, P. 1993 Proteolytic specificity of chymosin on bovine αs1-casein. Journal of Dairy Research 60 401412CrossRefGoogle Scholar
Rasmussen, L. K., Hojrup, P. & Petersen, T. E. 1992 The multimeric structure and the disulfide-bonding pattern of bovine κ-casein. European Journal of Biochemistry 207 215222CrossRefGoogle ScholarPubMed
Rasmussen, L. K., Højrup, P. & Petersen, T. E. 1994 Disulphide arrangement in bovine caseins: localization of intrachain disulphide bridges in monomers of κ- and αs2-casein from bovine milk. Journal of Dairy Research 61 485493CrossRefGoogle Scholar
Richo, G. R. & Conner, G. E. 1994 Structural requirements of procathepsin D activation and maturation. Journal of Biological Chemistry 269 1480614812CrossRefGoogle ScholarPubMed
Scarborough, P. E. & Dunn, B. M. 1994 Redesign of the substrate specificity of human cathepsin D: the dominant role of position 287 in the S2 subsite. Protein Engineering 7 495502CrossRefGoogle ScholarPubMed
Scarborough, P. E., Guruprasad, K., Topham, C., Richo, G. R., Conner, G. E., Blundell, T. L. & Dunn, B. M. 1993 Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modelling. Protein Science 2 264276CrossRefGoogle Scholar
Schmidt, D. G. & Poll, J. K. 1991 Enzymatic hydrolysis of whey proteins. Hydrolysis of a-lactalbumin and β-lactoglobulin in buffer solutions by proteolytic enzymes. Netherlands Milk and Dairy Journal 45 225240Google Scholar
Takahashi, T. & Tang, J. 1981 Cathepsin D from porcine and bovine spleen. Methods in Enzymology 80 565581CrossRefGoogle ScholarPubMed
Van Noort, J. M. & Van Der Drift, A. C. M. 1989 The selectivity of cathepsin D suggests an involvement of the enzyme in the generation of T-cell epitopes. Journal of Biological Chemistry 264 1415914164CrossRefGoogle ScholarPubMed
Větvička, V. & Fusek, M. 1994 Activation of peripheral blood neutrophils and lymphocytes by human procathepsin D and insulin-like growth factor II. Cellular Immunology 156 332341CrossRefGoogle ScholarPubMed
Větvička, V., Váoner, J., Baudyš, M., Tang, J., Foundling, S. I. & Fusek, M. 1993 Human breast milk contains procathepsin D—detection by specific antibodies. Biochemistry and Molecular Biology International 30 921928Google ScholarPubMed
Visser, F. M. W. & De Groot-Mostert, A. E. A. 1977 Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. 4. Protein breakdown: a gel electrophoretic study. Netherlands Milk, and Dairy Journal 31 247264 130Google Scholar
Visser, S. 1981 Proteolytic enzymes and their action on milk proteins. A review. Netherlands Milk and Dairy Journal 35 6588Google Scholar
Visser, S. 1993 Proteolytio enzymes and their relation to cheese ripening and flavor. An overview. Journal of Dairy Science 76 329350CrossRefGoogle Scholar
Visser, S. & Slangen, K. J. 1977 On the specificity of chymosin (rennin) in its action on bovine β-casein. Netherlands Milk and Dairy Journal 31 1630Google Scholar