Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T08:56:43.991Z Has data issue: false hasContentIssue false

The association of bovine SH-κ-casein at pH 7·0

Published online by Cambridge University Press:  01 June 2009

Henk J. Vreeman
Affiliation:
Netherlands Institute for Dairy Research, Ede, The Netherlands

Summary

The self-association of SH-κ-casein at pH 7·0 in 0·01 m-EDTA, 0·001 m-dithiothreitol buffer, containing 0·1, 0·2, 0·5 or 1·0 m-NaCl is of a monomer–polymer type. The polymer is a spherical particle, diam. 23 nm and mol. wt 570000 (30 monomers). These parameters are not greatly influenced by variations in ionic strength above 0·1. The critical micelle concentration, which is a property of a monomer–polymer equilibrium, decreases with increasing ionic strength. The standard free energy of association is about – 36 kJ/mol. monomer at 20 °C.

Type
Section C. Association of Proteins
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bevington, P. R. (1969). Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill.Google Scholar
Creeth, J. M. & Knight, C. G. (1965). Biochimica et Biophysica Acta 102, 549.CrossRefGoogle Scholar
Dewan, R. K., Chudgar, A., Bloomfield, V. A. & Morr, C. V. (1974). Journal of Dairy Science 57, 394.CrossRefGoogle Scholar
Fujita, H. (1975). In Foundations of Ultracentrifuge Analysis. Chemical Analysis, vol. 42. (Eds Elving, P. J. and Winefordner., J. D.) New York: J. Wiley.Google Scholar
Hill, R. J. & Wake, R. G. (1969). Nature, London 221, 635.CrossRefGoogle Scholar
Holt, C. (1975). Biochimica et Biophysica Acta 400, 293.CrossRefGoogle Scholar
Lederer, K. (1975). Die Makromolekulare Chemie 176, 2641.CrossRefGoogle Scholar
Pepper, L., Hipp, N. J. & Gordon, W. G. (1970). Biochimica et Biophysica Acta 207, 340.CrossRefGoogle Scholar
Schmidt, D. G. & Buchheim, W. (1976). Netherlands Milk and Dairy Journal 30, 17.Google Scholar
Schmidt, D. G. & Payens, T. A. J. (1976). In Surface and Colloid Science, vol. 9, chap. 3. (Ed. Matijevic, E..) New York: J. Wiley.Google Scholar
Schultz, B. C. & Bloomfield, V. A. (1976). Archives of Biochemistry and Biophysics 173, 18.CrossRefGoogle Scholar
Slattery, C. W. & Evard, R. (1973). Biochimica et Biophysica Acta 317, 529.Google Scholar
Swaisgood, H. E., Brunner, J. R. & Lillevik, H. A. (1964). Biochemistry 3, 1616.CrossRefGoogle Scholar
Talbot, B. & Waugh, D. F. (1970). Biochemistry 9, 2807.CrossRefGoogle Scholar
Tanford, C. (1961). Physical Chemistry of Macromolecules. New York: J. Wiley.Google Scholar
Trautman, R. (1956). Journal of Physical Chemistry 60, 1211.CrossRefGoogle Scholar
Vreeman, H. J., Both, P., Brinkhuis, J. A. & Van der Spek, C. A. (1977). Biochimica et Biophysica Acta 491, 93.CrossRefGoogle Scholar
Waugh, D. F. & Von Hippel, P. H. (1956). Journal of the American Chemical Society 78, 4576.CrossRefGoogle Scholar
Yamakawa, H. (1971). Modern Theory of Polymer Solutions. New York: Harper & Row.Google Scholar