Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T08:42:43.295Z Has data issue: false hasContentIssue false

Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330

Published online by Cambridge University Press:  01 June 2009

Valerie M. Marshall
Affiliation:
School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
Eoin N. Cowie
Affiliation:
Department of Biology and Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK
Rod S. Moreton
Affiliation:
Nestlé Research Centre, Vers-Chez-les-Blanc, CH-1000, Suisse

Summary

Two polysaccharides produced concurrently by Lactococcus lactis subsp. cremoris strain LC330 have been identified. One had a high molecular mass (> 1 × 106 Da) and was neutral. The second was smaller (∼ 10000 Da), charged and had a high phosphorus content. Sugar composition also differed. In chemostat culture the neutral polysaccharide was influenced by temperature and by nitrogen limitation. This polysaccharide was branched with terminal galactose moieties and contained galactose, glucose and glucosamine. The phosphopolysaccharide was more complex with glucose, rhamnose, galactose and glucosamine in an approximate ratio of 6:5:4:1.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brooker, B. E. 1976 Cytochemical observations on the extracellular carbohydrate produced by Streptococcus cremoris. Journal of Dairy Research 43 283289CrossRefGoogle ScholarPubMed
Cerning, J. 1990 Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiology Letters 87 113130CrossRefGoogle Scholar
Cerning, J., Bouillanne, C., Desmazeaud, M. J. & Landon, M. 1986 Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnology Letters 8 625628CrossRefGoogle Scholar
Cerning, J., Bouillanne, C., Desmazeaud, M. J. & Landon, M. 1988 Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnology Letters 10 255260CrossRefGoogle Scholar
Cerning, J., Bouillanne, C., Landon, M. & Desmazeaud, M. J. 1992 Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. Journal of Dairy Science 75 692699CrossRefGoogle Scholar
Cowie, E. N. 1993 Factors Influencing Texture Modifying Characteristics of Selected Strains of Lactic Acid Bacteria. PhD thesis, Oxford Brookes UniversityGoogle Scholar
Dittmer, J. C. & Wells, M. A. 1969 Bartlett phosphate determination. Methods in Enzymology 14 486487Google Scholar
Doco, T., Carcano, D., Ramos, P., Loones, A. & Fournet, B. 1991 Rapid isolation and estimation of polysaccharide from fermented skim milk with Streptococcus salivarius subsp. thermophilus by coupled anion exchange and gel-permeation high-performance liquid chromatography. Journal of Dairy Research 58 147150CrossRefGoogle Scholar
Doco, T., Piot, J. M., Guillochon, D., Carcano, D., Ramos, P., Loones, A. & Fournet, B. 1989 Preparation of polysaccharide from Streptococcus thermophilus using an enzyme ultrafiltration reactor. Biotechnology Techniques 3 393396CrossRefGoogle Scholar
Doco, T., Wieruszeski, J. -M., Fournet, B., Carcano, D., Ramos, P. & Loones, A. 1990 Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydrate Research 198 313321CrossRefGoogle ScholarPubMed
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956 Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 350356CrossRefGoogle Scholar
Forsén, R. & Häivä, V. -M. 1981 Induction of stable slime-forming and mucoid states by p–fluoro- phenylalanine in lactic streptococci. FEMS Microbiology Letters 12 409413CrossRefGoogle Scholar
Gancel, F. & Novel, G. 1994 Exopolysaccharide production by Streptococcus salivarius ssp. Thermophilus cultures. 2. Distinct modes of polymer production and degradation among clonal variants. Journal of Dairy Science 77 689695CrossRefGoogle Scholar
Gruter, M., Leeflang, B. R., Kuiper, J., Kamerling, J. P. & Vleigenthart, J. F. G. 1992 Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydrate Research 231 273291CrossRefGoogle ScholarPubMed
Gruter, M., Leeflang, B. R., Kuiper, J., Kamerling, J. P. & Vleigenthart, J. F. G. 1993 Structural characterisation of the exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus RR grown in skimmed milk. Carbohydrate Research 239 209226CrossRefGoogle Scholar
Hakomori, S. 1964 Rapid permethylation of glycolipids and polysaccharides, catalyzed by methylsulfinyl carbanion in dimethylsulfoxide Journal of Biochemistry 55 205208Google Scholar
Jones, D., Pell, P. A. & Sneath, P. H. A. 1984 Maintenance of bacteria on glass beads at –60°C to –76°C. In Maintenance of Microorganisms, pp. 3540 (Eds Kirsop, B. E. and Snell, J. J. S.). London: Academic PressGoogle Scholar
Kojic, M., Vujcic, M., Banina, A., Cocconcelli, P., Cerning, J. & Topisirovic, L. 1992 Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Applied and Environmental Microbiology 58 40864088CrossRefGoogle ScholarPubMed
Kontusaari, S. & Forsén, R. 1988 Finnish fermented milk “Viili”: involvement of two cell surface proteins in production of slime by Streptococcus lactis ssp. cremoris. Journal of Dairy Science 71 31973202CrossRefGoogle Scholar
Lomax, J. A., Gordon, A. H. & Chesson, A. 1983 Methylation of unfractionated, primary and secondary cell walls of plants, and the location of alkali labile substituents. Carbohydrate Research 122 1112CrossRefGoogle Scholar
Macura, D. & Townsley, P. M. 1984 Scandinavian ropy milk–identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. Journal of Dairy Science 67 735744CrossRefGoogle Scholar
Nakajima, H., Hlrota, T., Toba, T.Itoh, T. & Adachi, S. 1992 Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subspecies cremoris SBT 0495. Carbohydrate Research 224 245253CrossRefGoogle Scholar
Nakajima, H., Toyoda, S., Toba, T., Itoh, T., Mukai, T., Kitazawa, H. & Adachi, S. 1990 A novel phosphopolysaceharide from slime-forming Lactococcus lactis subspecies cremoris SBT 0495. Journal of Dairy Science 73 14721477CrossRefGoogle Scholar
Neeser, J. -R. & Schweizer, T. F. 1984 A quantitative determination by capillary gas-liquid chromatography of neutral and amino sugars (as O-methyloxime acetates), and a study on hydrolytic conditions for glycoproteins and polysaccharides in order to increase sugar recoveries. Analytical Biochemistry 142 5867CrossRefGoogle Scholar
Neve, H., Geis, A. & Teuber, M. 1988 Plasmid-encoded functions of ropy lactic acid streptococcal strains from Scandinavian fermented milk. Biochimie 70 437442CrossRefGoogle ScholarPubMed
Otto, R., Ten Brink, B., Veldkamp, H. & Konings, W. N. 1983 The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS Microbiology Letters 16 6974CrossRefGoogle Scholar
Schellhaass, S. M. 1983 Characterization of Exocellular Slime Produced by Bacterial Starter Cultures Used in the Manufacture of Fermented Dairy Products. PhD thesis, University of Minnesota (Dissertation Abstracts International B 44 2698–)Google Scholar
Sutherland, I. W. 1982 Biosynthesis of microbial exopolysaccharides. Advances in Microbial Physiology 23 79150CrossRefGoogle ScholarPubMed
Toba, T., Kotani, T. & Adachi, S. 1991 Capsular polysaccharide of a slime-forming Lactococcus lactis ssp. cremoris LAPT 3001 isolated from Swedish fermented milk ‘långfil’. International Journal of Food Microbiology 12 167171CrossRefGoogle ScholarPubMed
Toba, T., Nakajima, H., Tobitani, A. & Adachi, S. 1990 Scanning electron microscopic and texture studies on characteristic consistency of Nordic ropy sour milk. International Journal of Food Microbiology 11 313320CrossRefGoogle ScholarPubMed
Vedamuthu, E. R. & Neville, J. M. 1986 Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Applied and Environmental Microbiology 51 677682CrossRefGoogle ScholarPubMed
Vescovo, M., Scolari, G. L. & Bottazzi, V. 1989 Plasmid-encoded ropiness production in Lactobacillus casei subspecies casei. Biotechnology Letters 11 709712CrossRefGoogle Scholar
Von Wright, A. & Tynkkynek, S. 1987 Construction of Streptococcus lactis subsp. lactis strains with a single plasmid associated with mucoid phenotype. Applied and Environmental Microbiology 53 13851386CrossRefGoogle ScholarPubMed