Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T09:02:48.137Z Has data issue: false hasContentIssue false

676. Diffuse reflexion spectra of dairy products in the near infra-red region

Published online by Cambridge University Press:  01 June 2009

J. D. S. Goulden
Affiliation:
Physics Department, National Institute for Research in Dairying, University of Reading

Extract

A method for the study of the diffuse reflexion spectra of dairy products in the near infrared region has been described. It has been shown that in this region of the spectrum, the reflexion method gives better results than the transmission method for butter and dried milk products. The effects of homogenization on milk spectra have been studied, and also the effects of temperature and mechanical working on the spectrum of butter have been considered. Assignments have been made for the bands observed in the dried milk spectra and the effects of moisture and other factors on the spectra of dried materials have been briefly studied.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Burgess, W. H. & Herrington, B. L. (1955). J. Dairy Sci. 38, 250.CrossRefGoogle Scholar
(2)Lagoni, H. & Merten, D. (1956). Kieler Milchwirtschaft. ForschBerichte, 8, 293.Google Scholar
(3)Burton, H. (19541956). J. Dairy Res. (1954), 21, 194; (1955), 22, 74, 82, 200; (1956), 23, 92.CrossRefGoogle Scholar
(4)Mohr, W. (1955). Molkereiztg, Hildesh. 5, 167.Google Scholar
(5)Goulden, J. D. S. (1956). J. Sci. Fd Agric. 9, 609.CrossRefGoogle Scholar
(6)Sanderson, J. A. (1947). J. opt. Soc. Amer. 37, 771.CrossRefGoogle Scholar
(7)Derksen, W. L. & Monahan, T. I. (1952). J. opt. Soc. Amer. 42, 263.CrossRefGoogle Scholar
(8)Clark, R., Vinegar, R. & Hardy, J. D. (1953). J. opt. Soc. Amer. 43, 993.CrossRefGoogle Scholar
(9)Kacques, J. A. & Kuppenheim, H. F. (1953). J. appl. Physiol. 7, 523.Google Scholar
(10)Goulden, J. D. S. (1957). Chem. & Ind. 142Google Scholar
(11)Jacquez, J. A., McKeehan, W., Huss, J., Dimitroff, J. M. & Huppenheim, H. F. (1955). J. opt. Soc. Amer. 45, 781.CrossRefGoogle Scholar
(12)Brown, D. A. H. (1952). J. sci. lnstrum. 29, 292.CrossRefGoogle Scholar
(13)Dimitroff, J. M. & Swanson, D. W. (1956). J. opt. Soc. Amer. 46, 555.CrossRefGoogle Scholar
(14)Holman, R. T. & Edmondson, P. R. (1956). Analyt. Chem. 28, 1533.CrossRefGoogle Scholar
(15)Kaye, W. (1954). Spectrochim. Acta, 6, 257.CrossRefGoogle Scholar
(16)Pitts, E. (1954). Proc. Phys. Soc. B, 67, 105.CrossRefGoogle Scholar
(17)Kortüm, G. & Schreyer, G. (1955). Angew. Chem. 67, 694.CrossRefGoogle Scholar
(18)Stutz, G. F. A. & Pfund, A. H. (1927). Industr. Engng Chem. 19, 51.CrossRefGoogle Scholar
(19)Stratton, J. A. & Houghton, H. G. (1931). Phys. Rev. 38, 159.CrossRefGoogle Scholar