Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T11:29:48.479Z Has data issue: false hasContentIssue false

369. Determination of the free amino-nitrogen of casein and of fresh and deteriorated milk protein by the Van Slyke method

Published online by Cambridge University Press:  01 June 2009

C. H. Lea
Affiliation:
Low Temperature Station for Research in Biochemistry and Biophysics, University of Cambridge and Department of Scientific and Industrial Research

Extract

The reaction of casein and of fresh and deteriorated milk protein with nitrous acid has been followed at constant temperature for 4 hr. in the manometric apparatus of Van Slyke, and simplified procedures suggested whereby the method can be utilized for investigation of the deterioration of the protein of separated milk powder during storage.

Technical assistance in this work was given by Mr L. J. Parr: The work was carried out as part of the programme of the Food Investigation Board of the Department of Scientific and Industrial Research.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1948

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Van Slyke, D. D. (1911, 1912). J. biol. Chem. 9, 185; 12, 275.CrossRefGoogle Scholar
(2)Kendricke, A. B. & Hanke, M. E. (1937). J. biol. Chem. 117, 161.CrossRefGoogle Scholar
(3)Levene, P. A. & Van Slyke, D. D. (1912). J. biol. Chem. 12, 285.CrossRefGoogle Scholar
(4)Hopkins, F. G. (1929). J. biol. Chem. 84, 271.CrossRefGoogle Scholar
(5)Schmidt, C. A. (1929). J. biol. Chem. 82, 587.CrossRefGoogle Scholar
(6)Sure, B. & Hart, E. B. (1917). J. biol. Chem. 31, 527.CrossRefGoogle Scholar
(7)Dunn, M. S. & Schmidt, C. L. A. (1922). J. biol. Chem. 53, 401.Google Scholar
(8)Greenstein, J. P. (1933). J. biol. Chem. 101, 603.CrossRefGoogle Scholar
(9)Van Slyke, D. D. & Birchard, F. J. (19131914). J. biol. Chem. 16, 539.CrossRefGoogle Scholar
(10)Sanger, F. (1945). Biochem. J. 39, 507.CrossRefGoogle Scholar
(11)Kekwick, R. A. & Cannan, R. K. (1936). Biochem. J. 30, 235.CrossRefGoogle Scholar
(12)Cannan, R. K., Palmer, A. H. & Kibrick, A. C. (1942). J. biol. Chem. 142, 803.Google Scholar
(13)Lieben, F. & Loo, Y. C. (1942). J. biol. Chem. 145, 223.Google Scholar
(14)Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D. (1948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
(15)Cohn, E. J. & Hendry, J. L. (1930). Organic Syntheses, 10, 16.Google Scholar
(16)Fraenkel-Conrat, H. (1943). J. biol. Chem. 148, 453.Google Scholar
(17)Mitchell, H. H. & Eckstein, H. C. (1918). J. biol. Chem. 33, 373.Google Scholar
(18)Frieden, E. H., Dunn, M. S. & Coryell, C. D. (1943). J. phys. Chem. 47, 118.Google Scholar
(19)Miller, L. (1939). C.R. Lab. Carlsberg, 23, 125.Google Scholar
(20)Brand, E., Saidel, L. J., Goldwater, W. H., Kassel, B. & Ryan, F. J. (1945). J. Amer. chem Soc. 67, 1524.Google Scholar
(21)Grönwall, A. (1947). Nature, Lond., 159, 376.CrossRefGoogle Scholar