Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T04:52:25.384Z Has data issue: false hasContentIssue false

637. Acid production in milk by starter cultures—The effect of peptone and other stimulatory substances

Published online by Cambridge University Press:  01 June 2009

Ellen I. Garvie
Affiliation:
National Institute for Research in Dairying, University of Reading
L. A. Mabbitt
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

The rate of acid production by a slow variant of Streptococcus cremoris in milk was raised to that of the fast parent strain when peptone or acid hydrolysed peptone were added. Lactose utilization was similarly affected. However, the stimulation took place without any change in the rate of growth. Other sources of available nitrogen gave similar results.

It is concluded that the change from a fast to a slow culture which occurs on continued transfer is due to the loss of ability to utilize the nitrogen compounds of milk.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Berridge, N. J. & Members of the N.A.A.S. (1956). J. Dairy Res. 23, 342.CrossRefGoogle Scholar
(2)Harriman, L. A. & Hammer, B. W. (1931). J. Dairy Sci. 14, 40.CrossRefGoogle Scholar
(3)Anderson, A. W. & Elliker, P. R. (1953). J. Dairy Sci. 36, 608.CrossRefGoogle Scholar
(4)Storrs, F. C. & Anderson, E. B. (1949). XIIth Int. Dairy Congr. 2, 605.Google Scholar
(5)Pollack, M. A. & Lindner, M. (1943). J. biol. Chem. 147, 183.CrossRefGoogle Scholar
(6)Czulak, J. & Meanwell, L. J. (1951). Proc. Soc. appl. Bact. 14, 1.Google Scholar
(7)Anderson, A. W., Parker, R. B. & Elliker, P. R. (1955). J. Dairy Sci. 38, 1083.CrossRefGoogle Scholar
(8)Broadhurst, J. & Paley, C. (1939). J. Amer. Vet. Med. Ass. 94, 525.Google Scholar
(9)Morris, D. L. (1948). Science, 107, 254.CrossRefGoogle Scholar
(10)Fagen, H. J., Sibleck, E., Hussong, R. V. (1954). J. Dairy Sci. 37, 10.CrossRefGoogle Scholar
(11)Fairbairn, N. J. (1953). Chem. Ind. p. 86.Google Scholar
(12)Clarke, P. M., Garvie, E. I. & Posener, L. N. (1956). Dairy Ind. 21, 544.Google Scholar
(13)Woiwood, A. J. (1949). J. gen. Microbiol. 3, 312.CrossRefGoogle Scholar
(14)Craig, L. C., Gregory, J. D. & Hausmann, W. (1950). Anal. Chem. 22, 1462.CrossRefGoogle Scholar
(15)Marshall, M. S. (1920). J. Dairy Sci. 3, 406.CrossRefGoogle Scholar
(16)Hirsch, A. (1951). J. gen. Microbiol. 5, 208.CrossRefGoogle Scholar
(17)Davis, J. G. (1935). J. Dairy Res. 6, 175.CrossRefGoogle Scholar
(18)Braz, M. & Allen, L. A. (1939). J. Dairy Res. 10, 20.CrossRefGoogle Scholar
(19)Jago, G. R. (1954). J. Dairy Res. 21, 111.CrossRefGoogle Scholar