No CrossRef data available.
Article contents
57 Utility of Digital Phenotyping in Big Data to Answer Clinical Questions: Puberty as a Transdisciplinary Science Case Example
Published online by Cambridge University Press: 24 April 2023
Abstract
OBJECTIVES/GOALS: A disease-agnostic translational science framework for data mining is proposed for use across disciplines to: Answer clinical questions, justify future clinical research recruitment, and explore under-represented populations. As a case example, male puberty demonstrates utility of the framework. METHODS/STUDY POPULATION: As a case example using the generalizable framework, the following interdisciplinary question was asked: Does early pubertal timing increase the risk of developing type II diabetes (T2d) in boys? A digital phenotype of males < 18 years old was created in the TriNetX Diamond Network utilizing Boolean operator data queries. TriNetX contains patient electronic health record information (ICD-10 diagnoses, anthropometric measures). A case control analysis leveraging patient counts from various digital phenotypes allowed for outcome (T2d) comparison of boys diagnosed with precocious puberty (E30.1, ICD code for early pubertal timing) to those without, while controlling for body mass index (BMI). RESULTS/ANTICIPATED RESULTS: Subjects (N=12,996,132) displayed the following digital phenotype: Male, < 18 years old, without ever having a BMI documented >85th percentile. Boys diagnosed with precocious puberty (E30.1) were 6.89 times more likely to develop T2d when aged 14-18 years old than those without (OR 6.89, 95%CI: 5.17-9.19, p. DISCUSSION/SIGNIFICANCE: Boys are under-represented in the early pubertal timing literature, justifying future human subjects research on male puberty. This case example demonstrates a broader disease-agnostic framework which can be adapted across disciplines. Opportunities may include public health digital phenotyping.
- Type
- Biostatistics, Epidemiology, and Research Design
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s), 2023. The Association for Clinical and Translational Science