Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:44:19.472Z Has data issue: false hasContentIssue false

3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells

Published online by Cambridge University Press:  26 March 2019

Randi Ryan
Affiliation:
University of Kansas Frontiers
Shrikant Anant
Affiliation:
University of Kansas Medical Center
Prabhu Ramamoorthy
Affiliation:
University of Kansas Medical Center
Dharmalingam Subramaniam
Affiliation:
University of Kansas Medical Center
Scott Weir
Affiliation:
University of Kansas Medical Center
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: Drug repositioning has the potential to accelerate translation of novel cancer chemotherapeutics from bench to bedside. The goal of this study was to determine the effects of ciclopirox olamine (CPX) on esophageal tumor cells. METHODS/STUDY POPULATION: We tested the effect of CPX on four esophageal cancer cell lines, assessing cell proliferation and viability by hexosaminidase and clonogenicity assay, respectively. We analyzed the effects of CPX on three-dimensional (3D) esophageal tumor cell spheroids. We also analyzed effects on cell cycle by flow cytometry. For mechanism, we performed western blots for proteins involved in cell cycle regulation, apoptosis and the Wnt/β-catenin pathway. For in vivo effects, we performed a murine xenograft model with intraperitoneal administration of CPX (100 mg/Kg body weight daily). RESULTS/ANTICIPATED RESULTS: CPX inhibited growth of all cell lines in a time and concentration-dependent manner. CPX also inhibited growth of esophageal spheroids. Cell cycle analysis demonstrated G0/G1 arrest in cells treated with CPX. Western blot analyses demonstrated decreased expression of cyclinD1, CDK4, CDK6, and transcriptionally active β-catenin, supporting the role of CPX in cell cycle inhibition and decreased β-catenin activity. Finally, treatment of nude mice with CPX significantly decreased tumor xenograft volume. DISCUSSION/SIGNIFICANCE OF IMPACT: CPX demonstrates anti-tumor properties in esophageal cancer cell lines. The current results justify further research into the mechanism of this inhibition. Additionally, given its established safety in humans, CPX is a potential candidate for repositioning as an adjunct treatment for esophageal cancer.

Type
Basic/Translational Science/Team Science
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Association for Clinical and Translational Science 2019