Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T00:31:54.359Z Has data issue: false hasContentIssue false

3145 An Evaluation of Machine Learning and Traditional Statistical Methods for Discovery in Large-Scale Translational Data

Published online by Cambridge University Press:  26 March 2019

Megan C Hollister
Affiliation:
Vanderbilt University Medical Center
Jeffrey D. Blume
Affiliation:
Vanderbilt University Medical Center
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: To examine and compare the claims in Bzdok, Altman, and Brzywinski under a broader set of conditions by using unbiased methods of comparison. To explore how to accurately use various machine learning and traditional statistical methods in large-scale translational research by estimating their accuracy statistics. Then we will identify the methods with the best performance characteristics. METHODS/STUDY POPULATION: We conducted a simulation study with a microarray of gene expression data. We maintained the original structure proposed by Bzdok, Altman, and Brzywinski. The structure for gene expression data includes a total of 40 genes from 20 people, in which 10 people are phenotype positive and 10 are phenotype negative. In order to find a statistical difference 25% of the genes were set to be dysregulated across phenotype. This dysregulation forced the positive and negative phenotypes to have different mean population expressions. Additional variance was included to simulate genetic variation across the population. We also allowed for within person correlation across genes, which was not done in the original simulations. The following methods were used to determine the number of dysregulated genes in simulated data set: unadjusted p-values, Benjamini-Hochberg adjusted p-values, Bonferroni adjusted p-values, random forest importance levels, neural net prediction weights, and second-generation p-values. RESULTS/ANTICIPATED RESULTS: Results vary depending on whether a pre-specified significance level is used or the top 10 ranked values are taken. When all methods are given the same prior information of 10 dysregulated genes, the Benjamini-Hochberg adjusted p-values and the second-generation p-values generally outperform all other methods. We were not able to reproduce or validate the finding that random forest importance levels via a machine learning algorithm outperform classical methods. Almost uniformly, the machine learning methods did not yield improved accuracy statistics and they depend heavily on the a priori chosen number of dysregulated genes. DISCUSSION/SIGNIFICANCE OF IMPACT: In this context, machine learning methods do not outperform standard methods. Because of this and their additional complexity, machine learning approaches would not be preferable. Of all the approaches the second-generation p-value appears to offer significant benefit for the cost of a priori defining a region of trivially null effect sizes. The choice of an analysis method for large-scale translational data is critical to the success of any statistical investigation, and our simulations clearly highlight the various tradeoffs among the available methods.

Type
Basic/Translational Science/Team Science
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Association for Clinical and Translational Science 2019