Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T13:53:30.602Z Has data issue: false hasContentIssue false

Lexical and Prosodic Pitch Modifications in Cantonese Infant-directed Speech

Published online by Cambridge University Press:  03 February 2021

Luchang WANG
Affiliation:
Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong, China Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
Marina KALASHNIKOVA
Affiliation:
Basque Center on Cognition, Brain and Language, San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
René KAGER
Affiliation:
Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, Netherlands
Regine LAI
Affiliation:
Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong, China
Patrick C.M. WONG*
Affiliation:
Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong, China Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
*
Address for correspondence: Patrick C.M. Wong, G03, Leung Kau Kui Building, Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong. Email: [email protected]

Abstract

The functions of acoustic-phonetic modifications in infant-directed speech (IDS) remain a question: do they specifically serve to facilitate language learning via enhanced phonemic contrasts (the hyperarticulation hypothesis) or primarily to improve communication via prosodic exaggeration (the prosodic hypothesis)? The study of lexical tones provides a unique opportunity to shed light on this, as lexical tones are phonemically contrastive, yet their primary cue, pitch, is also a prosodic cue. This study investigated Cantonese IDS and found increased intra-talker variation of lexical tones, which more likely posed a challenge to rather than facilitated phonetic learning. Although tonal space was expanded which could facilitate phonetic learning, its expansion was a function of overall intonational modifications. Similar findings were observed in speech to pets who should not benefit from larger phonemic distinction. We conclude that lexical-tone adjustments in IDS mainly serve to broadly enhance communication rather than specifically increase phonemic contrast for learners.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaans, F., & Swingley, D. (2017). Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability. The Journal of the Acoustical Society of America, 141(5), 30703078. doi: 10.1121/1.4982246CrossRefGoogle ScholarPubMed
Ben-Aderet, T., Gallego-Abenza, M., Reby, D., & Mathevon, N. (2017). Dog-directed speech: why do we use it and do dogs pay attention to it?. Proceedings of the Royal Society B: Biological Sciences, 284(1846), 20162429. doi: 10.1098/rspb.2016.2429CrossRefGoogle Scholar
Benders, T. (2013). Mommy is only happy! Dutch mothers’ realisation of speech sounds in infant-directed speech expresses emotion, not didactic intent. Infant Behavior and Development, 36(4), 847862. doi: 10.1016/j.infbeh.2013.09.001CrossRefGoogle Scholar
Benders, T. (2016). Emotion-related explanations of the vowel variability in infant-directed speech. In Australasian International Conference on Speech Science and Technology (16th: 2016), 233236.Google Scholar
Benjamin, A., & Slocombe, K. (2018). ‘Who'sa good boy?!’Dogs prefer naturalistic dog-directed speech. Animal cognition, 21(3), 353364. doi: 10.1007/s10071-018-1172-4CrossRefGoogle ScholarPubMed
Boersma, P., & Weenink, D. J. M. (2017). Praat: Doing Phonetics by Computer [Computer program]. Available at: http://www.praat.org/Google Scholar
Burnham, D., Francis, E., Vollmer-Conna, U., Kitamura, C., Averkiou, V., Olley, A., Nguyen, M., & Paterson, C. (1998). Are you my little pussy-cat? acoustic, phonetic and affective qualities of infant-and pet-directed speech. Paper presented at the Fifth International Conference on Spoken Language Processing, Sydney, Australia.Google Scholar
Burnham, D., Kitamura, C., & Vollmer-Conna, U. (2002). What's new, pussycat? On talking to babies and animals. Science, 296(5572), 14351435. doi: 10.1126/science.1069587CrossRefGoogle ScholarPubMed
Cheng, M. C., & Chang, K. C. (2014). Tones in Hakka infant-directed speech: An acoustic perspective. Language and Linguistics, 15(3), 341390. doi: 10.1177/1606822X14520662Google Scholar
Cristia, A., & Seidl, A. (2014). The hyperarticulation hypothesis of infant-directed speech. Journal of Child Language, 41(4), 913934. doi: 10.1017/S0305000912000669CrossRefGoogle ScholarPubMed
Dodane, C., & Al-Tamimi, J. (2007). An acoustic comparison of vowel systems in adult directed-speech and child-directed speech: evidence from French, English & Japanese. Paper presented at the 16th International Congress of Phonetics Sciences, Saarbrücken, Germany.Google Scholar
Eaves, B. S. Jr., Feldman, N. H., Griffiths, T. L., & Shafto, P. (2016). Infant-directed speech is consistent with teaching. Psychological review, 123(6), 758. doi: 10.1037/rev0000031CrossRefGoogle ScholarPubMed
Englund, K. T. (2018). Hypoarticulation in infant-directed speech. Applied Psycholinguistics, 39(1), 6787. doi:10.1017/S0142716417000480CrossRefGoogle Scholar
Englund, K. T., & Behne, D. M. (2005). Infant directed speech in natural interaction—Norwegian vowel quantity and quality. Journal of psycholinguistic research, 34(3), 259280. doi: 10.1007/s10936-005-3640-7CrossRefGoogle ScholarPubMed
Fernald, A. (1989). Intonation and communicative intent in mothers’ speech to infants: Is the melody the message? Child Development, 60, 14971510. doi: 10.2307/1130938CrossRefGoogle ScholarPubMed
Fernald, A., & Kuhl, P. (1987). Acoustic determinants of infant preference for motherese speech. Infant behavior and development, 10(3), 279293. doi: 10.1016/0163-6383(87)90017-8CrossRefGoogle Scholar
Fernald, A., & Simon, T. (1984). Expanded intonation contours in mothers' speech to newborns. Developmental psychology, 20(1), 104. doi: 10.1037/0012-1649.20.1.104CrossRefGoogle Scholar
Fernald, A., Taeschner, T., Dunn, J., Papousek, M., de Boysson-Bardies, B., & Fukui, I. (1989). A cross-language study of prosodic modifications in mothers' and fathers' speech to preverbal infants. Journal of child language, 16(3), 477501. doi: 10.1017/S0305000900010679CrossRefGoogle ScholarPubMed
Galle, M. E., Apfelbaum, K. S., & McMurray, B. (2015). The role of single talker acoustic variation in early word learning. Language Learning and Development, 11(1), 6679. doi: 10.1080/15475441.2014.895249CrossRefGoogle ScholarPubMed
Gergely, A., Faragó, T., Galambos, Á., & Topál, J. (2017). Differential effects of speech situations on mothers’ and fathers’ infant-directed and dog-directed speech: An acoustic analysis. Scientific reports, 7(1), 13739. doi: 10.1038/s41598-017-13883-2CrossRefGoogle ScholarPubMed
Grieser, D. L., & Kuhl, P. K. (1988). Maternal speech to infants in a tonal language: Support for universal prosodic features in motherese. Developmental psychology, 24(1), 14. doi: 10.1037/0012-1649.24.1.14CrossRefGoogle Scholar
Han, M., de Jong, N. H., & Kager, R. (2018). Lexical Tones in Mandarin Chinese Infant-Directed Speech: Age-Related Changes in the Second Year of Life. Frontiers in psychology, 9, 434. doi: 10.3389/fpsyg.2018.00434CrossRefGoogle ScholarPubMed
Hartman, K. M., Bernstein Ratner, N., & Newman, R. S. (2017). Infant-directed speech (IDS) vowel clarity and child language outcomes. Journal of child language, 44(5), 11401162. doi: 10.1017/S0305000916000520CrossRefGoogle ScholarPubMed
Hermes, D. J., & Van Gestel, J. C. (1991). The frequency scale of speech intonation. Journal of the Acoustical Society of America, 90(1), 97102. doi: 10.1121/1.402397CrossRefGoogle ScholarPubMed
Jacobson, J. L., Boersma, D. C., Fields, R. B., & Olson, K. L. (1983). Paralinguistic features of adult speech to infants and small children. Child Development, 436442. doi: 10.2307/1129704CrossRefGoogle Scholar
Jeannin, S., Gilbert, C., Amy, M., & Leboucher, G. (2017). Pet-directed speech draws adult dogs’ attention more efficiently than Adult-directed speech. Scientific reports, 7(1), 4980. doi: 10.1038/s41598-017-04671-zCrossRefGoogle ScholarPubMed
Kalashnikova, M., & Burnham, D. (2018). Infant-directed speech from seven to nineteen months has similar acoustic properties but different functions. Journal of child language, 45(5), 10351053. doi: 10.1017/S0305000917000629CrossRefGoogle ScholarPubMed
Kalashnikova, M., Carignan, C., & Burnham, D. (2017). The origins of babytalk: smiling, teaching or social convergence?. Royal Society open science, 4(8), 170306. doi: 10.1098/rsos.170306CrossRefGoogle ScholarPubMed
Kitamura, C., & Burnham, D. (2003). Pitch and communicative intent in mother's speech: Adjustments for age and sex in the first year. Infancy, 4(1), 85110. doi: 10.1207/S15327078IN0401_5CrossRefGoogle Scholar
Kitamura, C., Thanavishuth, C., Burnham, D., & Luksaneeyanawin, S. (2002). Universality and specificity in infant-directed speech: Pitch modifications as a function of infant age and sex in a tonal and non-tonal language. Infant behavior and development, 24(4), 372392. doi: 10.1016/S0163-6383(02)00086-3CrossRefGoogle Scholar
Kuhl, P. K. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception & psychophysics, 50(2), 93107. doi: 10.3758/BF03212211CrossRefGoogle ScholarPubMed
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., Stolyarova, E. I., Sundberg, U., & Lacerda, F. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277(5326), 684686. doi: 10.1126/science.277.5326.684CrossRefGoogle ScholarPubMed
Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 9791000. doi: 10.1098/rstb.2007.2154CrossRefGoogle Scholar
Lehiste, I., & Peterson, G. E. (1961). Some basic considerations in the analysis of intonation. The Journal of the Acoustical Society of America, 33(4), 419425. doi: 10.1121/1.1908681CrossRefGoogle Scholar
Liu, L., & Kager, R. (2014). Perception of tones by infants learning a non-tone language. Cognition, 133(2), 385394. doi: 10.1016/j.cognition.2014.06.004CrossRefGoogle ScholarPubMed
Liu, H. M., Kuhl, P. K., & Tsao, F. M. (2003). An association between mothers’ speech clarity and infants’ speech discrimination skills. Developmental Science, 6(3), F1-F10. doi: 10.1111/1467-7687.00275CrossRefGoogle Scholar
Liu, H. M., Tsao, F. M., & Kuhl, P. K. (2007). Acoustic analysis of lexical tone in Mandarin infant-directed speech. Developmental Psychology, 43(4), 912. doi: 10.1037/0012-1649.43.4.912CrossRefGoogle ScholarPubMed
Martin, A., Schatz, T., Versteegh, M., Miyazawa, K., Mazuka, R., Dupoux, E., & Cristia, A. (2015). Mothers speak less clearly to infants than to adults: A comprehensive test of the hyperarticulation hypothesis. Psychological science, 26(3), 341347. doi: 10.1177/0956797614562453CrossRefGoogle ScholarPubMed
Masapollo, M., Polka, L., Molnar, M., & Ménard, L. (2017). Directional asymmetries reveal a universal bias in adult vowel perception. The Journal of the Acoustical Society of America, 141(4), 28572869. doi: 10.1121/1.4981006CrossRefGoogle ScholarPubMed
McMurray, B., Kovack-Lesh, K. A., Goodwin, D., & McEchron, W. (2013). Infant directed speech and the development of speech perception: Enhancing development or an unintended consequence?. Cognition, 129(2), 362378. doi: 10.1016/j.cognition.2013.07.015CrossRefGoogle ScholarPubMed
Miyazawa, K., Shinya, T., Martin, A., Kikuchi, H., & Mazuka, R. (2017). Vowels in infant-directed speech: More breathy and more variable, but not clearer. Cognition, 166, 8493. doi: 10.1016/j.cognition.2017.05.003CrossRefGoogle Scholar
Papoušek, M., & Hwang, S. F. C. (1991). Tone and intonation in Mandarin babytalk to presyllabic infants: Comparison with registers of adult conversation and foreign language instruction. Applied Psycholinguistics, 12(4), 481504. doi: 10.1017/S0142716400005889CrossRefGoogle Scholar
Papoušek, M., Papoušek, H., & Symmes, D. (1991). The meanings of melodies in motherese in tone and stress languages. Infant behavior and development, 14(4), 415440. doi: 10.1016/0163-6383(91)90031-MCrossRefGoogle Scholar
Polka, L., & Bohn, O. S. (2011). Natural Referent Vowel (NRV) framework: An emerging view of early phonetic development. Journal of Phonetics, 39(4), 467478. doi: 10.1016/j.wocn.2010.08.007CrossRefGoogle Scholar
Rost, G. C., & McMurray, B. (2009). Speaker variability augments phonological processing in early word learning. Developmental science, 12(2), 339349. doi: 10.1111/j.1467-7687.2008.00786.xCrossRefGoogle ScholarPubMed
Rost, G. C., & McMurray, B. (2010). Finding the signal by adding noise: The role of noncontrastive phonetic variability in early word learning. Infancy, 15(6), 608635. doi: 10.1111/j.1532-7078.2010.00033.xCrossRefGoogle ScholarPubMed
Singh, L. (2008). Influences of high and low variability on infant word recognition. Cognition, 106(2), 833870. doi:10.1016/j.cognition.2007.05.002CrossRefGoogle ScholarPubMed
Singh, L., & Fu, C. S. (2016). A new view of language development: the acquisition of lexical tone. Child development, 87(3), 834854. doi: 10.1111/cdev.12512CrossRefGoogle ScholarPubMed
Soderstrom, M. (2007). Beyond babytalk: Re-evaluating the nature and content of speech input to preverbal infants. Developmental Review, 27(4), 501532. doi: 10.1016/j.dr.2007.06.002CrossRefGoogle Scholar
Song, J. Y., Demuth, K., & Morgan, J. (2010). Effects of the acoustic properties of infant-directed speech on infant word recognition. The Journal of the Acoustical Society of America, 128(1), 389400. doi: 10.1121/1.3419786CrossRefGoogle ScholarPubMed
Stern, D. N., Spieker, S., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal speech: Infant age and context related changes. Journal of child language, 10(1), 115. doi: 10.1017/S0305000900005092CrossRefGoogle ScholarPubMed
Tang, P., Xu Rattanasone, N., Yuen, I., & Demuth, K. (2017). Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech and Lombard speech. The Journal of the Acoustical Society of America, 142(2), 493503. doi: 10.1121/1.4995998CrossRefGoogle ScholarPubMed
Tsao, F. M. (2017). Perceptual improvement of lexical tones in infants: effects of tone language experience. Frontiers in psychology, 8, 558. doi: 10.3389/fpsyg.2017.00558CrossRefGoogle ScholarPubMed
Uther, M., Knoll, M. A., & Burnham, D. (2007). Do you speak E-NG-LI-SH? A comparison of foreigner-and infant-directed speech. Speech Communication, 49(1), 27. doi: 10.1016/j.specom.2006.10.003CrossRefGoogle Scholar
Werker, J. F., Pons, F., Dietrich, C., Kajikawa, S., Fais, L., & Amano, S. (2007). Infant-directed speech supports phonetic category learning in English and Japanese. Cognition, 103(1), 147162. doi: 10.1016/j.cognition.2006.03.006CrossRefGoogle ScholarPubMed
Wong, P. (2013). Perceptual evidence for protracted development in monosyllabic Mandarin lexical tone production in preschool children in Taiwan. The Journal of the Acoustical Society of America, 133(1), 434443. doi: 10.1121/1.4768883CrossRefGoogle ScholarPubMed
Wong, P., & Chan, H. Y. (2018). Acoustic characteristics of highly distinguishable Cantonese entering and non-entering tones. The Journal of the Acoustical Society of America, 143(2), 765779. doi: 10.1121/1.5021251CrossRefGoogle ScholarPubMed
Wong, P. C., & Diehl, R. L. (2003). Perceptual normalization for inter-and intratalker variation in Cantonese level tones. Journal of Speech, Language, and Hearing Research. doi: 10.1044/1092-4388(2003/034)CrossRefGoogle ScholarPubMed
Wong, P., & Ng, K. W. S. (2018). Testing the Hyperarticulation and Prosodic Hypotheses of Child-Directed Speech: Insights from the Perceptual and Acoustic Characteristics of Child-Directed Cantonese Tones. Journal of Speech, Language, and Hearing Research, 61(8), 19071925. doi: 10.1044/2018_JSLHR-S-17-0375CrossRefGoogle ScholarPubMed
Xu, Y. (2013). ProsodyPro - A Tool for Large-scale Systematic Prosody Analysis. In Proceedings of Tools and Resources for the Analysis of Speech Prosody (TRASP 2013), 710.Google Scholar
Xu, N., & Burnham, D. (2010). Tone hyperarticulation and intonation in Cantonese infant directed speech. Paper presented at the Speech Prosody 2010-Fifth International Conference, Chicago, USA.Google Scholar
Xu, N., Burnham, D., Kitamura, C., & Vollmer-Conna, U. (2013) Vowel hyperarticulation in parrot-, dog- and infant-directed speech. Anthrozoos, 26(3), 373380. doi: 10.2752/175303713X13697429463592CrossRefGoogle Scholar
Xu Rattanasone, N., Burnham, D., & Reilly, R. G. (2013). Tone and vowel enhancement in Cantonese infant-directed speech at 3, 6, 9, and 12 months of age. Journal of Phonetics, 41(5), 332343. doi: 10.1016/j.wocn.2013.06.001CrossRefGoogle Scholar
Yeung, H. H., Chen, K. H., & Werker, J. F. (2013). When does native language input affect phonetic perception? The precocious case of lexical tone. Journal of Memory and Language, 68(2), 123139. doi: 10.1016/j.jml.2012.09.004CrossRefGoogle Scholar
Yip, M. (2002). Tone. Cambridge University Press. doi: 10.1017/CBO9781139164559CrossRefGoogle Scholar
Zhao, Y., & Jurafsky, D. (2009). The effect of lexical frequency and Lombard reflex on tone hyperarticulation. Journal of Phonetics, 37(2), 231247. doi: 10.1016/j.wocn.2009.03.002CrossRefGoogle Scholar
Zhao, T. C., Masapollo, M., Polka, L., Ménard, L., & Kuhl, P. K. (2019). Effects of formant proximity and stimulus prototypicality on the neural discrimination of vowels: Evidence from the auditory frequency-following response. Brain and language, 194, 7783. doi: 10.1016/j.bandl.2019.05.002CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(File)
File 216.4 KB