Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T08:26:39.344Z Has data issue: false hasContentIssue false

Diffusion of a particular 4.1(−) hereditary elliptocytosis allele in the French northern Alps

Published online by Cambridge University Press:  31 July 2008

G. Brunet
Affiliation:
Départment de Démographie et Génétique, Institut Européen des Génomutations
M. T. Ducluzeau
Affiliation:
CNRS URA 1171, Faculté de Médecìne Grange-Blanche, Lyon, and Institut Pasteur de Lyon
L. Roda
Affiliation:
Laboratoire d'Hématologie, Centre Hospitalier d'Annecy
P. Lefrancois
Affiliation:
Protection Maternelle et Infantile, Conseil Général de la Haute-Savoie, France
F. Baklouti
Affiliation:
CNRS URA 1171, Faculté de Médecìne Grange-Blanche, Lyon, and Institut Pasteur de Lyon
J. Delaunay
Affiliation:
CNRS URA 1171, Faculté de Médecìne Grange-Blanche, Lyon, and Institut Pasteur de Lyon
J. M. Robert
Affiliation:
Départment de Démographie et Génétique, Institut Européen des Génomutations

Summary

Heterozygous 4.1(−) hereditary elliptocytosis results from the absence of one haploid set of protein 4.1, a major component of the red cell skeleton. Two successive epidemiological investigations revealed fifteen probands in the French Northern Alps. The frequency of this disease seems to be very high in four small villages isolated in the Aravis mountains. The genealogical study shows that eleven probands share common ancestors who lived eight or ten generations ago in these villages. Thus there was probably a founder effect from one pair of ancestors, strengthened by endogamy. In contrast, four probands originate from another area and are not genealogically related. Recent results in molecular genetics support the present data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, A. (1978) Population structure in the Western Pyrenees: social class, migration and the frequency of consanguineous marriage, 1850 to 1910. Ann. hum. Biol. 5, 165.CrossRefGoogle ScholarPubMed
Bideau, A., Brunet, G., Heyer, E., Plauchu, H. & Robert, J. M. (1992) An abnormal concentration of cases of Rendu-Osler disease in the Valserine valley of the French Jura. Ann. hum. Biol. 19, 233.Google Scholar
Booth, P. B., Serjeantson, S., Woodfield, D. G. & Amato, D. (1977) Selective depression of blood group antigens associated with hereditary ovalocytosis among Melanesians. Vox Sang. 32, 99.CrossRefGoogle ScholarPubMed
Bouchard, J. P., Gagne, F., Tome, F. M. S. & Brunet, D. (1989) Nuclear inclusions in oculopharyngeal muscular dystrophy in Quebec. Can. J. neurol. Sci. 16, 446.CrossRefGoogle ScholarPubMed
Calabro, V., Giacobbe, A., Montanaro, V., Caseone, A., Filosa, S. & Battistuzzi, G. (1990) Genetic heterogeneity of the glucose-6-phosphate-dethydrogenase locus in southern Italy: a study on a population from the Matera district. Hum. Genet. 86, 49.CrossRefGoogle Scholar
Crawford, M. H. (1980) The breakdown of reproductive isolation in an Alpine genetic isolate: Acceglio, Italy. In: Population Structure and Genetic Disorders. Edited by Erikson, A. W et al. . Academic Press, London.Google Scholar
De Foras, E. A. (1843) Armorial et Nobiliaire de l’Ancien Duché de Savoie. Grenoble.Google Scholar
Delaunay, J., Alloisio, N., Morle, L. & Pothier, B. (1990) The red cell skeleton and its genetic disorders. In: Molecular Aspects of Medicine, 11, p. 161. Edited by Baum, A, Gergely, J & Fanburg, B. L. Pergamon, Oxford.Google Scholar
Devos, R. & Joinsten, C. (1978) Moeurs et Coutûmes de la Savoie du Nord au 19° Siecle. L’enquête de Mgr Rendu. CARE, Annecy.Google Scholar
Feddal, S., Brunet, G., Roda, C., Chabanis, S., Alloisio, N., Morle, L., Ducluzeau, M. T., Marechal, J., Robert, J. M., Benz, E. J., Delaunay, J. & Baklouti, F. (1991) Molecular analysis of 4.1( – ) hereditary elliptocytosis in the French province of Savoy. Blood, 78, 2113.CrossRefGoogle Scholar
Lasker, G. W., Chiarelli, B., Masali, M., Fedele, F. & Kaplan, B. A. (1972) Degree of human genetic isolation measured by isonymy and marital distances in two communities in an Alpine valley. Hum. Biol. 44, 351.Google Scholar
Lecomte, M. C., Dhermy, D., Gautero, H., Bournier, O., Galand, C. & Boivin, P. (1988) L’elliptocytose héréditaire en Afrique de I’Ouest: fréquence et répartition des variances de la spectrine. C.r. Acad. Sci. Paris, 306, 43.Google Scholar
Mariotte, J. Y. (1981) Histoire des Communes Savoyardes. Roanne, Horwath.Google Scholar
Nordstrom, S. & Barkman, Y. (1976) Hereditary macular degenerescence in 246 cases traced to one gene-source in central Sweden. Hereditas, 84, 163.Google Scholar
O’Brien, E., Jorde, L. B., Ronnlof, B., Fellmann, J. O. & Eriksson, A. W. (1988) Inbreeding and genetic disease in Sottunga, Finland. Am. J. phys. Anthropol. 77, 335.Google Scholar
Sauvain-Dugerdil, S. (1990) On the reality of Alpine ‘isolates’: some considerations based on 250 years of a Swiss valley’s genealogical history. In: Pluridisciplinary Approach to Human Isolates, p. 297. INED, Paris.Google Scholar
Serre, J. L., Jakobi, L. & Babron, M. C. (1985) A genetic isolate in the French Pyrenees: probabilities of origin of genes and inbreeding. J. biosoc. Sci. 17, 405.CrossRefGoogle ScholarPubMed
Sutter, J. & Goux, J. M. (1962) Evolution de la consanguinité en France de 1926 à 1958 avec des données récentes détaillées. Population, 17, 683.Google Scholar
Sutter, J. (1968) Fréquence de I’endogamie et ses facteurs au 19° siècle. Population, 23, 303.Google Scholar
Vergnes, H., Constans, J., Quilici, J. C., Lefevre-Witier, P., Sevin, J. & Stevens, M. (1980) Study of red blood cell and serum enzymes in five Pyrenean communities and in a Basque population sample. Hum. Hered. 30, 171.CrossRefGoogle Scholar