Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T11:40:04.676Z Has data issue: false hasContentIssue false

Androgen effects on women's gendered behaviour

Published online by Cambridge University Press:  31 July 2008

J. Richard Udry
Affiliation:
Carolina Population Center, University of North Carolina, Chapel Hill
Naomi M. Morris
Affiliation:
Community Health Sciences, University of Illinois, Chicago, USA
Judith Kovenock
Affiliation:
Carolina Population Center, University of North Carolina, Chapel Hill

Summary

Test of the applicability of the hormonal theory of sex-dimorphic behaviour to adult women is achieved in this study by assembling measures of prenatal and adult androgen exposure, and a broad measure of gendered behaviour on a sample of white women aged 27–30. Androgen exposure in the second (and no other) trimester of fetal life, combined with and in interaction with adult androgens, masculinises women's behaviour and explains a substantial proportion of the within-sex variance in women's adult gendered behaviour.

Type
Research Article
Copyright
Copyright © 1995, Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, D. R., Davidson, I. A., Longstaff, A. & Pearson, C. K. (1987) Sexual differentiation of the human midtrimester brain. Eur. J. Obstet. Gynec. Reprod. Biol. 25, 7.CrossRefGoogle ScholarPubMed
Bem, S. L. (1981) Bem Sex-Role Inventory-Professional Manual. Consulting Psychologists Press, Palo Alto, California.Google Scholar
Berzins, J. I., Welling, M. A. & Wetter, R. E. (1978) A new measure of psychological androgyny based on the personality research form. J. Consult. Clin. Psychol. 46, 126.CrossRefGoogle ScholarPubMed
Berzins, J. I., Welling, M. A. & Wetter, R. E. (1981) User's Manual for the PRF ANDO Scale.Google Scholar
Beyer, C. & Feder, H. H. (1987) Sex steroids and afferent input: their roles in brain sexual differentiation. Ann. Rev. Physiol. 49, 349.CrossRefGoogle ScholarPubMed
Breedlove, S. M. (1992) Sexual dimorphism in the vertebrate nervous system. J. Neurosci. 12, 4133.CrossRefGoogle ScholarPubMed
Butler, G. E., Walker, R. F., Walker, R. V., Teague, P., Riad-Fahmy, D. & Ratcliffe, S. G. (1989) Salivary testosterone levels and the progress of puberty in the normal boy. Clin. Endocrinol. 30, 587.CrossRefGoogle ScholarPubMed
Dittman, R. W., Kappes, M. H., Kappes, M. E., Borger, D., Stegner, H., Willig, R. H. & Wallis, H. (1990a) Congenital adrenal hyperplasia I: gender-related behavior and attitudes in female patients and sisters. Psychoneuroendocrinology, 15, 401.CrossRefGoogle Scholar
Dittman, R. W., Kappes, M. H., Kappes, M. E., Borger, D., Stegner, H., Willig, R. H. & Wallis, H. (1990b) Congenital adrenal hyperplasia. II: Gender related behavior and attitudes in female salt-wasting and simple-virilizing patients. Psychoneuroendocrinology, 15, 421.CrossRefGoogle Scholar
Dreyer, N. A., Woods, N. F. & Sherman, J. A. (1991) ISRO: a scale to measure sex-role orientation. Sex Roles, 7, 173.CrossRefGoogle Scholar
Ehrhardt, A. A. & Meyer-Bahlburg, H. F. L. (1981) Effects of prenatal sex hormones on gender-related behavior. Science, 211, 1312.CrossRefGoogle ScholarPubMed
Ehrhardt, A. A., Meyer-Bahlburg, H.F., Rosen, L. R., Feldman, J. F., Veridiano, N. P., Zimmerman, I. & McEwen, B. S. (1985) Archs Sexual Behav. 14, 57.CrossRefGoogle Scholar
Geschwind, N. & Galaburda, A. M. (1985a) Cerebral lateralization: biological mechanisms, associations, and pathology. II. A hypothesis and a program for research. Archs Neurol. 42, 428.CrossRefGoogle Scholar
Geschwind, N. & Galaburda, A. M. (1985b) Cerebral lateralization: Biological mechanisms, associations, and pathology. II. A hypothesis and a program for research. Archs Neurol. 42, 521.CrossRefGoogle Scholar
Geschwind, N. & Galaburda, A. M. (1987) Cerebral Lateralization. MIT Press, Cambridge, Massachusetts.Google Scholar
Goy, R. W. (1970) Experimental control of psychosexuality. Phil. Trans. Roy. Soc. Lond. B. 259, 149.Google ScholarPubMed
Goy, R. W., Bercovitch, F. B. & McBrair, M. C. (1988) Behavioral masculinization is independent of genital masculinization in prenatally adrogenized female rhesus macaques. Horm. Behav. 22, 552.CrossRefGoogle Scholar
Hansen, J. & Campbell, D. (1985) Manual for the SVIB-SCII. 4th edition. Stanford University Press, Stanford, CA.Google Scholar
Hines, M. (1982) Prenatal gonadal hormones and sex differences in human behavior. Psychol. Bull. 92, 56.CrossRefGoogle ScholarPubMed
Longino, H. E. (1990) Science as Social Knowledge, Chap. 6. Princeton University Press, Princeton, NJ.Google Scholar
Martini, L. (1992) Androgen metabolism in the brain. Neuroendocrinol. Lett. 14, 315.Google Scholar
McManus, I. C. & Bryden, M. P. (1991) Geschwind's theory of cerebral lateralization: developing a formal, causal model. Psychol. Bull. 110, 237.CrossRefGoogle ScholarPubMed
Mellon, S. H. (1994) Neurosteroids: biochemistry, modes of action, and clinical relevance. J. clin. Endocr. Metab. 78, 1003.Google ScholarPubMed
Miller, W. B. (1980) The Psychology of Reproduction. Appendix 4: Instruments Used for the Measurement of Psychological Traits. National Technical Information Service, Springfield, Virginia.Google Scholar
Pilgrim, C. & Reisert, I. (1992) Differences between male and female brains: developmental mechanisms and implications. Horm. Metab. Res. 24, 353.CrossRefGoogle ScholarPubMed
Purifoy, F. E. & Koopmans, L. H. (1980) Androstenedione, testosterone, and free testosterone concentration in women of various occupations. Social Biol. 26, 179.CrossRefGoogle Scholar
Quadagno, D. M., Briscoe, R. & Quadagno, J. S. (1977) Effect of perinatal gonadal hormones on selected nonsexual behavior patterns: a critical assessment of the nonhuman and human literature. Psychol. Bull. 84, 62.CrossRefGoogle ScholarPubMed
Reinisch, J. M. (1977) Prenatal exposure of human foetuses to synthetic progestin and oestrogen affects personality. Nature, 266, 561.Google Scholar
Reinisch, J. M. & Sanders, S. A. (1984) In: Progress in Brain Research, 61, pp. 407–416. Edited by De Vries, G. J. et al. Elsevier, Amsterdam.Google Scholar
Reinisch, J. M., Ziemba-Davis, M. & Sanders, S. A. (1991) Hormonal contributions to sexually dimorphic behavioral development in humans. Psychoneuroendocrinology, 16, 213.CrossRefGoogle ScholarPubMed
Rosen, G. D., Sherman, G. F. & Galaburda, A. M. (1991) Ontogenesis of neocortical asymmetry: a [3H]thymidine study. Neuroscience, 41, 779.CrossRefGoogle ScholarPubMed
Stevens, G. & Featherman, D. L. (1981) A revised socioeconomic index of occupational status. Social Sci. Res. 10, 364.CrossRefGoogle Scholar
Swaab, D. F. L., Gooren, J. G. & Hofman, M. A. (1992) The human hypothalamus in relation to gender and sexual orientation. In: Progress in Brain Research, 93, pp. 205219. Edited by Swaab, D. F. et al. Elsevier, Amsterdam.Google Scholar
Van Den Berg, B.J. (1987) Data Archive and Users Manual of the Child Health and Development Study, version 1.1. School of Public Health, University of California, Berkeley.Google Scholar
Williams, J. E. & Best, D. L. (1990) Sex and Psyche. Sage, Newbury Park, California.Google Scholar
Witelson, S. F. (1992) Cognitive neuroanatomy: a new era. Neurology, 42, 709.Google Scholar