Published online by Cambridge University Press: 14 July 2016
We consider a multiclass single-server queueing network as a model of a packet switching network. The rates packets are sent into this network are controlled by queues which act as congestion windows. By considering a sequence of congestion controls, we analyse a sequence of stationary queueing networks. In this asymptotic regime, the service capacity of the network remains constant and the sequence of congestion controllers act to exploit the network's capacity by increasing the number of packets within the network. We show that the stationary throughput of routes on this sequence of networks converges to an allocation that maximises aggregate utility subject to the network's capacity constraints. To perform this analysis, we require that our utility functions satisfy an exponential concavity condition. This family of utilities includes weighted α-fair utilities for α > 1.