Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T16:23:33.747Z Has data issue: false hasContentIssue false

Sur certaines fonctionnelles exponentielles du mouvement brownien réel

Published online by Cambridge University Press:  14 July 2016

Marc Yor*
Affiliation:
Université Paris VI
*
Adresse postale: Laboratoire de Probabilités, Université Paris VI, 4 Place Jussieu, Tour 56, 3ème Etage, 75252 Paris Cedex 05, France.

Abstract

Dufresne [1] recently showed that the integral of the exponential of Brownian motion with negative drift is distributed as the reciprocal of a gamma variable. In this paper, it is shown that this result is another formulation of the distribution of last exit times for transient Bessel processes. A bivariate distribution of such integrals of exponentials is also obtained explicitly.

MSC classification

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Dufresne, D. (1990) The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuarial J., 3979.Google Scholar
[2]Getoor, R. K. (1979) The Brownian escape process. Ann. Prob. 7, 864867.Google Scholar
[3]Pitman, J. W. Et Yor, M. (1981) Bessel processes and infinitely divisible laws. In Stochastic Integrals, ed. Williams, D. Lecture Notes in Mathematics 851, Springer-Verlag, Berlin.Google Scholar
[4]Revuz, D. Et Yor, M. (1991) Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin.Google Scholar
[5]Sharpe, M. (1980) Some transformations of diffusions by time reversal. Ann. Prob. 8, 11571162.Google Scholar
[6]Williams, D. (1974) Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. 28, 738768.Google Scholar
[7]Yor, M. (1984) A propos de l'inverse du mouvement brownien dans ℝn (n ≧ 3). Ann. Inst. H. Poincaré 21, 2738.Google Scholar
[8]Yor, M. (1990) Sur les décompositions affines d'une variable stable d'indice 1/2. En préparation.Google Scholar