Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T02:05:39.791Z Has data issue: false hasContentIssue false

Stochastic comparisons and ageing properties of an extended gamma process

Published online by Cambridge University Press:  25 February 2021

Zeina Al Masry*
Affiliation:
FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, ENSMM
Sophie Mercier*
Affiliation:
Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau, France
Ghislain Verdier*
Affiliation:
Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau, France
*
*Postal address: FEMTO-ST, Université Bourgogne Franche-Comté, CNRS, ENSMM, Besançon Cedex 25000, France. Email address: [email protected]
**Postal address: Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau 64000, France.
**Postal address: Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau 64000, France.

Abstract

Extended gamma processes have been seen as a flexible extension of standard gamma processes in the recent reliability literature, for the purpose of cumulative deterioration modeling. The probabilistic properties of the standard gamma process have been well explored since the 1970s, whereas those of its extension remain largely unexplored. In particular, stochastic comparisons between degradation levels modeled by standard gamma processes and ageing properties for the corresponding level-crossing times are now well understood. The aim of this paper is to explore similar properties for extended gamma processes and see which ones can be broadened to this new context. As a by-product, new stochastic comparisons for convolutions of gamma random variables are also obtained.

Type
Research Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Masry, Z., Mercier, S. and Verdier, G. (2017). Approximate simulation techniques and distribution of an extended gamma process. Methodology Comput. Appl. Prob. 19, 213235.CrossRefGoogle Scholar
Al Masry, Z., Mercier, S. and Verdier, G. (2018). Generalized method of moments for an extended gamma process. Commun. Statist. Theory Meth. 47, 36873714.CrossRefGoogle Scholar
Boland, P. J., Singh, H. and Cukic, B. (2004). The stochastic precedence ordering with applications in sampling and testing. J. Appl. Prob. 41, 7382.CrossRefGoogle Scholar
Çinlar, (1980). On a generalization of gamma processes. J. Appl. Prob. 17, 467480.CrossRefGoogle Scholar
Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R. (2006). Actuarial Theory for Dependent Risks: Measures, Orders and Models. John Wiley.Google Scholar
Diaconis, P. and Perlman, M. D. (1990). Bounds for tail probabilities of weighted sums of independent gamma random variables. Lecture Notes Monograph Series 16, 147166.CrossRefGoogle Scholar
Doksum, K. A. and Hoyland, A. (1992). Models for variable-stress accelerated life testing experiment based on Wiener processes and the inverse Gaussian distribution. Technometrics 34, 7482.CrossRefGoogle Scholar
Doksum, K. A. and Normand, S.-L. T. (1995). Gaussian models for degradation processes, I: Methods for the analysis of biomarker data. Lifetime Data Anal. 1, 131144.CrossRefGoogle ScholarPubMed
Dykstra, R. L. and Laud, P. (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9, 356367.CrossRefGoogle Scholar
Guida, M. and Pulcini, G. (2013). The inverse gamma process: a family of continuous stochastic models for describing state-dependent deterioration phenomena. Reliab. Eng. Syst. Saf. 120, 7279.CrossRefGoogle Scholar
Guida, M., Postiglione, F. and Pulcini, G. (2012). A time-discrete extended gamma process for time-dependent degradation phenomena. Reliab. Eng. Syst. Saf. 105, 7379.CrossRefGoogle Scholar
Kahle, W., Mercier, S. and Paroissin, C. (2016). Degradation Processes in Reliability. Wiley-ISTE.CrossRefGoogle Scholar
Kochar, S. (2012). Stochastic comparisons of order statistics and spacings: a review. ISRN Prob. Statist. 2012, 839473.CrossRefGoogle Scholar
Lai, C. D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York.Google Scholar
Marshall, A. W. and Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families (Springer Series in Statistics). Springer.Google Scholar
Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, Chichester.Google Scholar
Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999). Stochastic Processes for Insurance and Finance (Wiley Series in Probability and Statistics). John Wiley, Chichester.CrossRefGoogle Scholar
Sangüesa, C., Bada, F. G. and Cha, J. H. (2014). Preservation of ageing classes in deterioration models with independent increments. J. Inequal. Appl. 2014, 200.CrossRefGoogle Scholar
Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions (Cambridge Studies in Advanced Mathematics 68). Cambridge University Press.Google Scholar
Sengupta, D. and Nanda, A. K. (1999). Log-concave and concave distributions in reliability. Naval Res. Logistics 46, 419433.3.0.CO;2-B>CrossRefGoogle Scholar
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.CrossRefGoogle Scholar
Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models (Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics). John Wiley, Chichester.Google Scholar
Sumita, U. and Shanthikumar, J. G. (1985). A class of correlated cumulative shock models. Adv. Appl. Prob. 17, 347366.CrossRefGoogle Scholar
Van Noortwijk, J. M. (2009). A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 94, 221.CrossRefGoogle Scholar
Ye, Z. S. and Chen, N. (2014). The inverse Gaussian process as a degradation model. Technometrics 56, 302311.CrossRefGoogle Scholar
Yu, Y. (2009). Stochastic ordering of exponential family distributions and their mixtures. J. Appl. Prob. 46, 244254.CrossRefGoogle Scholar
Zhao, P. (2011). Some new results on convolutions of heterogeneous gamma random variables. J. Multivariate Anal. 102, 958976.CrossRefGoogle Scholar