Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T14:18:04.801Z Has data issue: false hasContentIssue false

The Smooth-Fit Property in an Exponential Lévy Model

Published online by Cambridge University Press:  04 February 2016

Damien Lamberton*
Affiliation:
Université Paris-Est
Mohammed Mikou*
Affiliation:
Ecole Internationale des Sciences du Traitement de l'Information
*
Postal address: Laboratoire d'Analyse et de Mathématiques Appliquées, Université Paris-Est, UMR CNRS 8050, 5 Boulevard Descartes, F-77454 Marne-la-Vallée Cedex 2, France. Email address: [email protected]
∗∗ Postal address: Laboratoire de Mathématiques, Ecole Internationale des Sciences du Traitement de l'Information, avenue du Parc, 95011 Cergy-Pontoise Cedex, France. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the smooth-fit property of the American put price with finite maturity in an exponential Lévy model when the underlying stock pays dividends at a continuous rate. As in the perpetual case, a regularity property is sufficient for smooth fit to occur. We also derive conditions on the Lévy measure under which smooth fit fails.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Prob. 15, 20622080.CrossRefGoogle Scholar
Bather, J. (1970). Optimal stopping problems for Brownian motion. Adv. Appl. Prob. 2, 259286.CrossRefGoogle Scholar
Bertoin, J. (1996). Lévy Processes. Cambridge University Press.Google Scholar
Bertoin, J. (1997). Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121, 345354.Google Scholar
Carr, P., Geman, H., Madan, D. B. and Yor, M. (2002). The fine structure of returns: an empirical investigation. J. Business 75, 305332.CrossRefGoogle Scholar
Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
El Karoui, N., Lepeltier, J.-P. and Millet, A. (1992). A probabilistic approach to the reduite in optimal stopping. Prob. Math. Statist. 13, 97121.Google Scholar
Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.Google Scholar
Lamberton, D. and Mikou, M. (2008). The critical price for the American put in an exponential Lévy model. Finance Stoch. 12, 561581.CrossRefGoogle Scholar
Mikou, M. (2009). Options américaines dans le modèle exponentiel de Lévy. , Université Paris-Est.Google Scholar
Peskir, G. (2007). Principle of smooth fit and diffusions with angles. Stochastics 79, 293302.Google Scholar
Peskir, G. and Shiryaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Birkhäuser, Basel.Google Scholar
Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Zhang, X. L. (1997). Numerical analysis of American option pricing in a Jump-diffusion model. Math. Operat. Res. 22, 668690.Google Scholar