Article contents
Sensitivity of mean-field fluctuations in Erlang loss models with randomized routing
Published online by Cambridge University Press: 23 June 2021
Abstract
In this paper we study a large system of N servers, each with capacity to process at most C simultaneous jobs; an incoming job is routed to a server if it has the lowest occupancy amongst d (out of N) randomly selected servers. A job that is routed to a server with no vacancy is assumed to be blocked and lost. Such randomized policies are referred to JSQ(d) (Join the Shortest Queue out of d) policies. Under the assumption that jobs arrive according to a Poisson process with rate $N\lambda^{(N)}$ where $\lambda^{(N)}=\sigma-\frac{\beta}{\sqrt{N}\,}$ , $\sigma\in\mathbb{R}_+$ and $\beta\in\mathbb{R}$ , we establish functional central limit theorems for the fluctuation process in both the transient and stationary regimes when service time distributions are exponential. In particular, we show that the limit is an Ornstein–Uhlenbeck process whose mean and variance depend on the mean field of the considered model. Using this, we obtain approximations to the blocking probabilities for large N, where we can precisely estimate the accuracy of first-order approximations.
Keywords
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust
References
- 1
- Cited by