Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T17:25:55.880Z Has data issue: false hasContentIssue false

Scaling Limit for a Drainage Network Model

Published online by Cambridge University Press:  14 July 2016

C. F. Coletti*
Affiliation:
Universidade de São Paulo
L. R. G. Fontes*
Affiliation:
Universidade de São Paulo
E. S. Dias*
Affiliation:
Universidade de São Paulo
*
Postal address: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090, São Paulo, Brazil.
Postal address: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090, São Paulo, Brazil.
Postal address: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090, São Paulo, Brazil.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the two-dimensional version of a drainage network model introduced in Gangopadhyay, Roy and Sarkar (2004), and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed in Fontes, Isopi, Newman and Ravishankar (2002).

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2009 

Footnotes

Research supported by FAPESP grant 2006/54511-2.

Research supported by FAPESP grant 2004/13008-0.

References

[1] Arratia, R. (1981). Coalescing Brownian motions and the voter model on {Z}. Unpublished manuscript.Google Scholar
[2] Arratia, R. (1981). Limiting point processes for rescalings of coalescing and annihilating random walks on {Z}d . Ann. Prob. 9, 909936.CrossRefGoogle Scholar
[3] Belhaouari, S., Mountford, T., Sun, R. and Valle, G. (2006). Convergence results and sharp estimates for the voter model interfaces. Electron. J. Prob. 11, 768801.Google Scholar
[4] Durrett, R. (1996). Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont, CA.Google Scholar
[5] Ferrari, P. A., Fontes, L. R. G. and Wu, X.-Y. (2005). Two-dimensional Poisson trees converge to the Brownian web. Ann. Inst. H. Poincaré Prob. Statist. 41, 851858.CrossRefGoogle Scholar
[6] Ferrari, P. A., Landim, C. and Thorisson, H. (2004). Poisson trees, succession lines and coalescing random walks. Ann. Inst. H. Poincaré Prob. Statist. 40, 141152.Google Scholar
[7] Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2002). The Brownian web. Proc. Nat. Acad. Sci. USA 99, 1588815893.CrossRefGoogle ScholarPubMed
[8] Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2004). The Brownian web: characterization and convergence. Ann. Prob. 32, 28572883.Google Scholar
[9] Gangopadhyay, S., Roy, R. and Sarkar, A. (2004). Random oriented trees: a model of drainage networks. Ann. App. Prob. 14, 12421266.Google Scholar
[10] Newman, C. M., Ravishankar, K. and Sun, R. (2005). Convergence of coalescing nonsimple random walks to the Brownian web. Electron. J. Prob. 10, 2160.CrossRefGoogle Scholar
[11] Rodriguez-Iturbe, I. and Rinaldo, A. (1997). Fractal River Basins: Chance and Self-Organization. Cambridge University Press.Google Scholar
[12] Scheidegger, A. E. (1967). A stochastic model for drainage patterns into an intramontane trench. Bull. Ass. Sci. Hydrol. 12, 1520.Google Scholar
[13] Tóth, B. and Werner, W. (1998). The true self-repelling motion. Prob. Theory Relat. Fields 111, 375452.Google Scholar