No CrossRef data available.
Article contents
Rumination on Infinite Markov Systems
Published online by Cambridge University Press: 05 September 2017
Abstract
Recent work by Moussouris [10] has clarified our present knowledge of finite Markov fields. The present note examines, in a loose and general fashion, whether one can extend the treatment to infinite fields.
- Type
- Part V — Stochastic Processes
- Information
- Copyright
- Copyright © 1975 Applied Probability Trust
References
[1]
Bartlett, M. S. (1968) A further note on nearest-neighbour models. J. R. Statist. Soc.
A 131, 579–580.Google Scholar
[2]
Bartlett, M. S. (1971) Physical nearest-neighbour models and non-linear time series. J. Appl. Prob.
8, 222–232.CrossRefGoogle Scholar
[3]
Bartlett, M. S. (1971) Two-dimensional nearest-neighbour systems and their ecological applications. Statistical Ecology
1, 179–194.Google Scholar
[4]
Bartlett, M. S. (1974) The statistical analysis of spatial pattern. Adv. Appl. Prob.
6, 336–358.CrossRefGoogle Scholar
[5]
Besag, J. E. (1974) Spatial interaction and the statistical analysis of lattice systems. J. R. Statist. Soc. B.
36, 192–236.Google Scholar
[6]
Lévy, P. (1948) Chaînes doubles de Markoff et fonctions aléatoires de deux variables. C. R. Acad. Sci. Paris
226, 53–55.Google Scholar
[7]
Lévy, P. (1948) Exemples de processus doubles de Markoff. C. R. Acad. Sci. Paris
226, 307–308.Google Scholar
[8]
Lévy, P. (1949) Processus doubles de Markoff. Colloques Internat. du Centre National de la Recherche Scientifique, Paris
13, 53–59.Google Scholar
[9]
Moran, P. A. P. (1973) A Gaussian-Markovian process on a square lattice. J. Appl. Prob.
10, 54–62.Google Scholar
[10]
Moussouris, J. (1974) Gibbs and Markov random systems with constraints. J. Statist. Phys.
10, 11–33.CrossRefGoogle Scholar
[11]
Rota, G. C. (1964) On the foundations of combinatorial theory. Z. Wahrscheinlichkeitsth.
2, 340–368.Google Scholar