No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
A matrix game is played repeatedly, with the actions taken at each stage determining both a reward paid to Player I and the probability of continuing to the next stage. An infinite history of play determines a sequence (Rn) of such rewards, to which we assign the payoff lim supn (R1 + · ·· + Rn). Using the concept of playable strategies, we slightly generalize the definition of the value of a game. Then we find sufficient conditions for the existence of a value and for the existence of stationary optimal strategies (Theorems 8 and 9). An example shows that the game need not have a value (Example 4).