Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T17:53:40.710Z Has data issue: false hasContentIssue false

Renewal approximation for the absorption time of a decreasing Markov chain

Published online by Cambridge University Press:  24 October 2016

Gerold Alsmeyer*
Affiliation:
University of Münster
Alexander Marynych*
Affiliation:
Taras Shevchenko National University of Kyiv
*
* Postal address: Institute of Mathematical Statistics, Department of Mathematics and Computer Science, University of Münster, Orléans-Ring 10, D-48149 Münster, Germany. Email address: [email protected]
** Postal address: Faculty of Cybernetics, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01601 Kyiv, Ukraine. Email address: [email protected]

Abstract

We consider a Markov chain (M n )n≥0 on the set ℕ0 of nonnegative integers which is eventually decreasing, i.e. ℙ{M n+1<M n   |  M n a}=1 for some a∈ℕ and all n≥0. We are interested in the asymptotic behavior of the law of the stopping time T=T(a)≔inf{k∈ℕ0:  M k <a} under ℙn ≔ℙ (·  |  M 0=n) as n→∞. Assuming that the decrements of (M n )n≥0 given M 0=n possess a kind of stationarity for large n, we derive sufficient conditions for the convergence in the minimal L p -distance of ℙn (Ta n)∕b n∈·) to some nondegenerate, proper law and give an explicit form of the constants a n and b n .

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alsmeyer, G. (2013).The smoothing transform: a review of contraction results. In Random Matrices and Iterated Random Functions (Springer Proc. Math. Stat. 53),Springer,Heidelberg, pp. 189228.Google Scholar
[2] Berestycki, N. (2009).Recent Progress in Coalescent Theory (Math. Surveys 16)Sociedade Brasileira de Matemática,Rio de Janeiro.Google Scholar
[3] Bertoin, J. and Kortchemski, I. (2014).Self-similar scaling limits of Markov chains on the positive integers. To appear inAnn. Appl. Prob.Available at http://arxiv.org/abs/1412.1068.Google Scholar
[4] Bingham, N. H.,Goldie, C. M. and Teugels, J. L. (1989).Regular Variation (Encyclopedia Math. Appl. 27).Cambridge University Press.Google Scholar
[5] feller, W.(1949).Fluctuation theory of recurrent events.Trans. Amer. Math. Soc. 31,231240.Google Scholar
[6] Givens, C. R. and Shortt, R. M. (1984).A class of Wasserstein metrics for probability distributions.Michigan Math. J. 31,231240.Google Scholar
[7] Gnedin, A. V. (2004).The Bernoulli sieve.Bernoulli 10,7996.Google Scholar
[8] Gnedin, A. and Pitman, J. (2005).Regenerative composition structures.Ann. Prob. 33,445479.Google Scholar
[9] Gnedin, A. and Yakubovich, Y. (2007).On the number of collisions in λ-coalescents.Electron. J. Prob. 12,15471567.Google Scholar
[10] Gnedin, A.,Iksanov, A. and Marynych, A. (2010).Limit theorems for the number of occupied boxes in the Bernoulli sieve.Theory Stoch. Process. 16,4457.Google Scholar
[11] Gnedin, A.,Iksanov, A. and Marynych, A. (2014).λ-coalescents: a survey. InCelebrating 50 years of the Applied Probability Trust (J. Appl. Prob. Spec. Vol.51A)Applied Probability Trust,Sheffield, pp.2340.Google Scholar
[12] Gnedin, A.,Iksanov, A.,Marynych, A. and Möhle, M. (2014).On asymptotics of the beta coalescents.Adv. Appl. Prob. 46,496515.Google Scholar
[13] Gnedin, A. V.,Iksanov, A. M.,Negadajlov, P. and Rösler, U. (2009).The Bernoulli sieve revisited.Ann. Appl. Prob. 19,16341655.Google Scholar
[14] Gut, A. (2009).Stopped Random Walks: Limit Theorems and Applications, 2nd edn.Springer,New York.Google Scholar
[15] Haas, B. and Miermont, G. (2011).Self-similar scaling limits of non-increasing Markov chains.Bernoulli 17,12171247.Google Scholar
[16] Iksanov, A. and !Möhle, M. (2007).A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree.Electron. Commun. Prob. 12,2835.CrossRefGoogle Scholar
[17] Iksanov, A. and Möhle, M. (2008).On the number of jumps of random walks with a barrier. Adv. Appl. Prob. 40,206228.CrossRefGoogle Scholar
[18] Iksanov, A.,Marynych, A. and Meiners, M. (2016).Moment convergence of first-passage times in renewal theory.Stat. Prob. Lett. 119,234143.Google Scholar
[19] Iksanov, A.,Marynych, A. and Meiners, M. (2014).Limit theorems for renewal shot noise processes with eventually decreasing response functions.Stoch. Process. Appl. 124,21322170.Google Scholar
[20] Johnson, O. and Samworth, R. (2005).Central limit theorem and convergence to stable laws in Mallows distance.Bernoulli 11,829845. (Acknowledgement of priority: 12 (2006), 191.)Google Scholar
[21] Marynych, A. (2010).Asymptotic behaviour of absorption time of decreasing Markov chains.Bull. Kiev Univ. Ser. Phys. Math. Sci. 1,118121(in Ukrainian).Google Scholar
[22] Marynych, M. and Verovkin, G. (2014).Weak convergence of the number of zero increments in the random walk with barrier.Electron. Commun. Prob. 19,74.CrossRefGoogle Scholar
[23] Pitman, J. (1999).Coalescents with multiple collisions. Ann. Prob. 27,18701902.CrossRefGoogle Scholar
[24] Rachev, S. T. (1991).Probability Metrics and the Stability of Stochastic Models.John Wiley,,Chichester.Google Scholar
[25] Ross, S. M. (1982).A simple heuristic approach to simplex efficiency.Europ. J. Operat. Res. 9,344346.Google Scholar
[26] Sagitov, S. (1999).The general coalescent with asynchronous mergers of ancestral lines.J. Appl. Prob. 36,11161125.Google Scholar
[27] Thorisson, H. (2000).Coupling, Stationarity, and Regeneration.Springer,New York.Google Scholar
[28] Van Cutsem, B. and Ycart, B. (1994).Renewal-type behavior of absorption times in Markov chains.Adv. Appl. Prob. 26,9881005.CrossRefGoogle Scholar
[29] Zolotarev, V. M. (1997).Modern theory of summation of random variables.VSP,Utrecht.Google Scholar