Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T04:23:02.106Z Has data issue: false hasContentIssue false

Random paths through a convex region

Published online by Cambridge University Press:  14 July 2016

E. G. Enns
Affiliation:
University of Calgary
P. F. Ehlers
Affiliation:
Okanagan College

Abstract

The distribution of the length of random secants through a convex region is formulated in terms of the intersection volume of the convex region with its translated self. This method allows a more straightforward approach to calculating secant-length distributions for various measures of randomness. The results are applied to calculating the transit-time distribution of particles traversing a convex region. Several examples are given.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1978 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandrasekhar, S. (1943) Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1.CrossRefGoogle Scholar
Coleman, R. (1969) Random paths through convex bodies. J. Appl. Prob. 6, 430441.CrossRefGoogle Scholar
Hadwiger, H. (1950) Neue Integralrelationen für Eikörperpaare. Acta Sci. Math. 13, 252257.Google Scholar
Kendall, M. G. and Moran, P. A. P. (1963) Geometrical Probability. Griffin, London.Google Scholar
Miles, R. E. (1969) Poisson flats in Euclidean spaces. Part I: Finite number of random uniform flats. Adv. Appl. Prob. 1, 211237.CrossRefGoogle Scholar
Kingman, J. F. C. (1965) Mean free paths in a convex reflecting region. J. Appl. Prob. 2, 162168.CrossRefGoogle Scholar
Kingman, J. F. C. (1969) Random secants of a convex body. J. Appl. Prob. 6, 660672.CrossRefGoogle Scholar
Mallows, C. L. and Clark, J. M. C. (1970), (1971) Linear intercept distributions do not characterize plane sets. J. Appl. Prob. 7, 240244: corrections J. Appl. Prob. 8, 208–209.CrossRefGoogle Scholar
Serra, J. (1969) Introduction à la morphologie mathématique. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, Fascicule 3.Google Scholar
Van Vliet, K. M. and Fassett, J. R. (1965) In Fluctuation Phenomena in Solids, ed. Burgess, R. E., Academic Press, New York, p. 268.Google Scholar