Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T05:32:33.170Z Has data issue: false hasContentIssue false

Problèmes de premier passage résolubles par la méthode de séparation des variables

Published online by Cambridge University Press:  14 July 2016

Mario Lefebvre*
Affiliation:
École Polytechnique de Montréal
*
Adresse postale: Département de mathématiques appliquées, École Polytechnique de Montréal, C. P. 6079, Succursale Centre-ville, Montréal, Québec, Canada H3C 3A7.

Abstract

In this paper, bidimensional stochastic processes defined by ax(t) = y(t)dt and dy(t) = m(y)dt + [2v(y)]1/2dW(t), where W(t) is a standard Brownian motion, are considered. In the first section, results are obtained that allow us to characterize the moment-generating function of first-passage times for processes of this type. In Sections 2 and 5, functions are computed, first by fixing the values of the infinitesimal parameters m(y) and v(y) then by the boundary of the stopping region.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Recherche subventionnée par le Conseil de recherches en sciences naturelles et en génie du Canada et par le fonds FCAR du Québec.

References

Références

Abramowitz, M. Et Stegun, I. A. (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.Google Scholar
Capocelli, R. M. Et Ricciardi, L. M. (1972) On the inverse of the first passage time probability problem. J. Appl. Prob. 9, 270287.Google Scholar
Ditkin, V. A. Et Prodnikov, A. P. (1965) Integral Transforms and Operational Calculus. Pergamon Press, Oxford.Google Scholar
Lefebvre, M. (1989) First-passage densities of a two-dimensional process. SIAM J. Appl. Math. 49, 15141523.Google Scholar
Lefebvre, M. (1991) Quelques résultats au sujet des densités de premier passage pour des processus de diffusion. Ann. Sci. math. Québec 15, 165175.Google Scholar
Rishel, R. (1991) Controlled wear processes: modeling optimal control. IEEE Trans. Autom. Control 36, 11001102.Google Scholar
Whittle, P. (1982) Optimization over Time, Vol. I. Wiley, Chichester.Google Scholar