Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T19:29:31.086Z Has data issue: false hasContentIssue false

Overflow probability upper bound in fluid queues with general on-off sources

Published online by Cambridge University Press:  14 July 2016

Jacky Guibert*
Affiliation:
CNET/France Telecom, 38-40 rue du General Leclerc, 92 131 Issy-les-Moulineaux Cedex France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letters to the Editor
Copyright
Copyright © Applied Probability Trust 1994 

References

Anick, D., Mitra, D. and Sondhi, M. M. (1982) Stochastic theory of a data handling system with multiple sources. Bell Syst. Tech. J. 61, 18711894.Google Scholar
Bensaou, B., Guibert, J. and Roberts, J. (1990) Fluid queuing models for a superposition of on/off sources. ITC Broadband Seminar, Morristown.Google Scholar
Bensaou, B., Guibert, J., Roberts, J. and Simonian, A. (1993) Performance of an ATM multiplexer queue in the fluid approximation using the Benes approach. Ann. Operat. Res. To appear.Google Scholar
Churchill, R. V. (1972) Operational Mathematics. McGraw-Hill, New York.Google Scholar
Guibert, J. (1994) Overflow probability upper bound for heterogeneous fluid queues handling general on-off sources. ITC 14, Antibes. Google Scholar
Kleinrock, L. (1975) Queueing Systems Vol. I, Theory. Wiley, New York Google Scholar
Kosten, L. (1986) Liquid models for a type of information buffer problem. Delft Progr. Rep. 11, 7186.Google Scholar
Norros, L., Roberts, J., Simonian, A. and Virtamo, T. (1991) The superposition of variable bit rate sources in an ATM multiplexer. IEEE JSAC 9,378387.Google Scholar
Simonian, A. and Virtamo, J. (1991) Transient and stationary distributions for fluid queues and input processes with a density. SIAM J. Appl. Math. 51, 17321739.CrossRefGoogle Scholar
Stern, T. E. and Elwalid, A. I. (1991) Analysis of separable Markov-modulated rate models for information-handling systems. Adv. Appl. Prob. 23, 105139.Google Scholar