Published online by Cambridge University Press: 14 July 2016
We present a brief summary of some results related to deriving orthogonal representations of second-order random fields and its application in solving linear prediction problems. In the homogeneous and/or isotropic case, the spectral theory provides an orthogonal expansion in terms of spherical harmonics, called spectral decomposition (Yadrenko 1983). A prediction formula based on this orthogonal representation is shown. Finally, an application of this formula in solving a real-data problem related to prospective geophysics techniques is presented.