Published online by Cambridge University Press: 14 July 2016
We consider a stockpile in which each item has a stochastic field life with known distribution, this distribution changing in time in a known deterministic fashion. The problem is to order the items for issuance to the field with the objective of maximizing the total field life. Under monotone likelihood ratio assumptions on the field life distributions, and convexity and concavity assumptions on the change in time of the distributions, we show that LIFO and FIFO policies possess a strong optimality property.
Research supported by contract N00014-67-A-2014 Task 0001, Project NR-347020, Office of Naval Research with George Washington University.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.