Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Pakes, Anthony G.
1979.
The age of a Markov process.
Stochastic Processes and their Applications,
Vol. 8,
Issue. 3,
p.
277.
Asmussen, Søren
1982.
Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the GI/G/1 queue.
Advances in Applied Probability,
Vol. 14,
Issue. 1,
p.
143.
Doney, R. A.
1983.
A note on conditioned random walk.
Journal of Applied Probability,
Vol. 20,
Issue. 02,
p.
409.
Doney, R. A.
1985.
Conditional limit theorems for asymptotically stable random walks.
Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete,
Vol. 70,
Issue. 3,
p.
351.
Larralde, Hernan
and
Weiss, George H.
1995.
Expected number of sites visited by a constrainedn-step random walk.
Physical Review E,
Vol. 52,
Issue. 2,
p.
1313.
Borovkov, K. A.
and
Vatutin, V A.
1996.
On distribution tails and expectations of maxima in critical branching processes.
Journal of Applied Probability,
Vol. 33,
Issue. 03,
p.
614.
Topchii, V. A.
and
Vatutin, V. A.
1998.
Maximum of the Critical Galton--Watson Processes and Left-Continuous Random Walks.
Theory of Probability & Its Applications,
Vol. 42,
Issue. 1,
p.
17.
Stadje, Wolfgang
2000.
First exit times for integer valued continuous time markov chains.
Sequential Analysis,
Vol. 19,
Issue. 3,
p.
93.
Ватутин, Владимир Алексеевич
Vatutin, Vladimir Alekseevich
Вахтель, Виталий Иванович
Vakhtel', Vitalii Ivanovich
Фляйшманн, К
and
Fleischmann, Klaus
2007.
Критические процессы Гальтона - Ватсона: Максимум общего числа частиц внутри большого окна.
Теория вероятностей и ее применения,
Vol. 52,
Issue. 3,
p.
419.
Vatutin, V. A.
Wachtel, V.
and
Fleischmann, K.
2008.
Critical Galton–Watson Processes: The Maximum of Total Progenies within a Large Window.
Theory of Probability & Its Applications,
Vol. 52,
Issue. 3,
p.
470.
den Hollander, Frank
Majumdar, Satya N
Meylahn, Janusz M
and
Touchette, Hugo
2019.
Properties of additive functionals of Brownian motion with resetting.
Journal of Physics A: Mathematical and Theoretical,
Vol. 52,
Issue. 17,
p.
175001.