Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T05:08:51.019Z Has data issue: false hasContentIssue false

On the long-range dependence of fractional Poisson and negative binomial processes

Published online by Cambridge University Press:  09 December 2016

A. Maheshwari*
Affiliation:
Indian Institute of Technology Bombay
P. Vellaisamy*
Affiliation:
Indian Institute of Technology Bombay
*
* Postal address: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
* Postal address: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Abstract

We discuss the short-range dependence (SRD) property of the increments of the fractional Poisson process, called the fractional Poissonian noise. We also establish that the fractional negative binomial process (FNBP) has the long-range dependence (LRD) property, while the increments of the FNBP have the SRD property. Our definitions of the SRD/LRD properties are similar to those for a stationary process and different from those recently used in Biard and Saussereau (2014).

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Beghin, L. and Orsingher, E. (2009).Fractional Poisson processes and related planar random motions.Electron. J. Prob. 14,17901827.CrossRefGoogle Scholar
[2] Biard, R. and Saussereau, B. (2014).Fractional Poisson process: long-range dependence and applications in ruin theory.J. Appl. Prob. 51,727740.Google Scholar
[3] Ding, Z.,Granger, C. W. J. and Engle, R. F. (1993).A long memory property of stock market returns and a new model.J. Empirical Finance 1,83106.Google Scholar
[4] Doukhan, P.,Oppenheim, G. and Taqqu, M. S. (eds) (2003).Theory and Applications of Long-Range Dependence.Birkhäuser,Boston, MA.Google Scholar
[5] D'Ovidio, M. and Nane, E. (2014).Time dependent random fields on spherical non-homogeneous surfaces.Stoch. Process. Appl. 124,20982131.CrossRefGoogle Scholar
[6] Feller, W. (1971).An Introduction to Probability Theory and Its Applications, Vol. II,2nd edn.John Wiley,New York.Google Scholar
[7] Heyde, C. C. and Yang, Y. (1997).On defining long-range dependence.J. Appl. Prob. 34,939944.Google Scholar
[8] Karagiannis, T.,Molle, M. and Faloutsos, M. (2004).Long-range dependence ten years of internet traffic modeling.IEEE Internet Comput. 8,5764.CrossRefGoogle Scholar
[9] Kozubowski, T. J. and Podgórski, K. (2009).Distributional properties of the negative binomial Lévy process.Prob. Math. Statist. 29,4371.Google Scholar
[10] Laskin, N. (2003).Fractional Poisson process.Commun. Nonlinear Sci. Numer. Simul. 8,201213.CrossRefGoogle Scholar
[11] Leonenko, N. N.,Meerschaert, M. M.,Schilling, R. L. and Sikorskii, A. (2014).Correlation structure of time-changed Lévy processes.Commun. Appl. Ind. Math. 6,e-483.Google Scholar
[12] Mainardi, F.,Gorenflo, R. and Scalas, E. (2004).A fractional generalization of the Poisson processes.Vietnam J. Math. 32,5364.Google Scholar
[13] Meerschaert, M. M.,Nane, E. and Vellaisamy, P. (2011).The fractional Poisson process and the inverse stable subordinator.Electron. J. Prob. 16,16001620.CrossRefGoogle Scholar
[14] Pagan, A. (1996).The econometrics of financial markets.J. Empirical Finance 3,15102.CrossRefGoogle Scholar
[15] Varotsos, C. and Kirk-Davidoff, D. (2006).Long-memory processes in ozone and temperature variations at the region 60°s-60°n .Atmos. Chem. Phys. 6,40934100.CrossRefGoogle Scholar
[16] Vellaisamy, P. and Maheshwari, A. (2016).Fractional negative binomial and Pólya processes. To appear in Prob. Math. Statist. Google Scholar