Published online by Cambridge University Press: 01 October 2019
We consider decision problems with arbitrary action spaces, deterministic transitions, and infinite time horizon. In the usual setup when probability measures are countably additive, a general version of Kuhn’s theorem implies under fairly general conditions that for every mixed strategy of the decision maker there exists an equivalent behavior strategy. We examine to what extent this remains valid when probability measures are only assumed to be finitely additive. Under the classical approach of Dubins and Savage (2014), we prove the following statements: (1) If the action space is finite, every mixed strategy has an equivalent behavior strategy. (2) Even if the action space is infinite, at least one optimal mixed strategy has an equivalent behavior strategy. The approach by Dubins and Savage turns out to be essentially maximal: these two statements are no longer valid if we take any extension of their approach that considers all singleton plays.
Support from the Basic Research Program of the National Research University Higher School of Economics is gratefully acknowledged.