Published online by Cambridge University Press: 18 January 2022
For a non-negative separable random field Z(t), $t\in \mathbb{R}^d$ , satisfying some mild assumptions, we show that $ H_Z^\delta =\lim_{{T} \to \infty} ({1}/{T^d}) \mathbb{E}\{{\sup_{ t\in [0,T]^d \cap \delta \mathbb{Z}^d } Z(t) }\} <\infty$ for $\delta \ge 0$ , where $0 \mathbb{Z}^d\,:\!=\,\mathbb{R}^d$ , and prove that $H_Z^0$ can be approximated by $H_Z^\delta$ if $\delta$ tends to 0. These results extend the classical findings for Pickands constants $H_{Z}^\delta$ , defined for $Z(t)= \exp( \sqrt{ 2} B_\alpha (t)- \lvert {t} \rvert^{2\alpha })$ , $t\in \mathbb{R}$ , with $B_\alpha$ a standard fractional Brownian motion with Hurst parameter $\alpha \in (0,1]$ . The continuity of $H_{Z}^\delta$ at $\delta=0$ is additionally shown for two particular extensions of Pickands constants.