Published online by Cambridge University Press: 14 July 2016
Equations are derived for the distribution of the busy period of the GI/G/2 queue. The equations are analyzed for the M/G/2 queue, assuming that the service times have a density which is an arbitrary linear combination, with respect to both the number of stages and the rate parameter, of Erlang densities. The coefficients may be negative. Special cases and examples are studied.
Research supported by the Natural Sciences and Engineering Research Council of Canada.