Published online by Cambridge University Press: 14 July 2016
A collection of jobs is to be processed by a single machine. The amount of processing required by each job is a random variable with a known probability distribution. The jobs must be processed in a manner which is consistent with a precedence relation but the machine is free to switch from one job to another at any time; such switches are costly, however. This paper discusses conditions under which there is an optimal strategy for allocating the machine to the jobs which is given by a fixed permutation of the jobs indicating in which order they should be processed. When this is so, existing algorithms may be helpful in giving the best job ordering.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.