Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-25T19:31:24.274Z Has data issue: false hasContentIssue false

On penalized goal-reaching probability minimization under borrowing and short-selling constraints

Published online by Cambridge University Press:  05 November 2024

Ying Huang*
Affiliation:
Central South University
Jun Peng*
Affiliation:
Central South University
*
*Postal address: School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R. China.
*Postal address: School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R. China.

Abstract

We consider a robust optimal investment–reinsurance problem to minimize the goal-reaching probability that the value of the wealth process reaches a low barrier before a high goal for an ambiguity-averse insurer. The insurer invests its surplus in a constrained financial market, where the proportion of borrowed amount to the current wealth level is no more than a given constant, and short-selling is prohibited. We assume that the insurer purchases per-claim reinsurance to transfer its risk exposure to a reinsurer whose premium is computed according to the mean–variance premium principle. Using the stochastic control approach based on the Hamilton–Jacobi–Bellman equation, we derive robust optimal investment–reinsurance strategies and the corresponding value functions. We conclude that the behavior of borrowing typically occurs with a lower wealth level. Finally, numerical examples are given to illustrate our results.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, E. W., Hansen, L. P. and Sargent, T. J. (2003). A quartet of semigroups for model specification, robustness, prices of risk and model detection. J. Econom. Assoc. Europe 1, 68123.CrossRefGoogle Scholar
Azcue, P. and Muler, M. (2009). Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints. Insurance Math. Econom. 44, 2634.CrossRefGoogle Scholar
Bai, L. H. and Guo, J. Y. (2010). Optimal dynamic excess-of-loss reinsurance and multidimensional portfolio selection. Sci. China Math. 53, 17871804.CrossRefGoogle Scholar
Bäuerle, N. (2005). Benchmark and mean–variance problems for insurers. Math. Methods Operat. Res. 62, 159165.CrossRefGoogle Scholar
Bayraktar, E. and Young, V. R. (2016). Optimally investing to reach a bequest goal. Insurance Math. Econom. 70, 110.CrossRefGoogle Scholar
Bayraktar, E. and Zhang, Y. C. (2015). Minimizing the probability of lifetime ruin under ambiguity aversion. SIAM J. Control Optim. 53, 5890.CrossRefGoogle Scholar
Björk, T. and Murgoci, A. (2010). A general theory of Markovian time-inconsistent stochastic control problems. Working paper, Stockholm School of Economics.CrossRefGoogle Scholar
Brachetta, M. and Ceci, C. (2019). Optimal proportional reinsurance and investment for stochastic factor models. Insurance Math. Econom. 87, 1533.CrossRefGoogle Scholar
Branger, N. and Larsen, L. S. (2013). Robust portfolio choice with uncertainty about jump and diffusion risk. J. Bank. Finance 37, 50365047.CrossRefGoogle Scholar
Browne, S. (1997). Survival and growth with a liability: Optimal portfolio strategies in continuous time. Math. Operat. Res. 22, 468493.CrossRefGoogle Scholar
Chang, H. and Li, J. A. (2023). Robust equilibrium strategy for DC pension plan with the return of premiums clauses in a jump-diffusion model. Optimization 72, 463492.CrossRefGoogle Scholar
Fleming, W. and Soner, M. (1993). Controlled Markov Processes and Viscosity Solutions. Springer, New York.Google Scholar
Grandell, J. (1991). Aspects of Risk Theory. Springer, New York.CrossRefGoogle Scholar
Han, X., Liang, Z. B. and Yuen, K. C. (2021). Minimizing the probability of absolute ruin under ambiguity aversion. Appl. Math. Optimization 84, 24952525.CrossRefGoogle Scholar
Irgens, C. and Paulsen, J. (2004). Optimal control of risk exposure, reinsurance and investments for insurance portfolios. Insurance Math. Econom. 35, 2151.CrossRefGoogle Scholar
Knight, F. H. (1921). Risk, Uncertainty, and Profit. Hart, Schaffner and Marx, New York.Google Scholar
Liang, X. Q., Liang, Z. B. and Young, V. R. (2020). Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin. Insurance Math. Econom. 92, 128146.CrossRefGoogle Scholar
Luo, S. Z. (2008). Ruin minimization for insurers with borrowing constraints. N. Amer. Actuarial J. 12, 143174.CrossRefGoogle Scholar
Luo, S. Z., Wang, M. M. and Zhu, W. (2019). Maximizing a robust goal-reaching probability with penalization on ambiguity. J. Comput. Appl. Math. 348, 261281.CrossRefGoogle Scholar
Maenhout, P. J. (2004). Robust portfolio rules and asset pricing. Rev. Financial Studies 17, 951983.CrossRefGoogle Scholar
Promislow, S. D. and Young, V. R. (2005). Minimizing the probability of ruin when claims follow Brownian motion with drift. N. Amer. Actuarial J. 9, 110128.CrossRefGoogle Scholar
Tan, K. S., Wei, P. Y., Wei, W. and Zhang, S. C. (2020). Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle. Europ. J. Operat. Res. 282, 345362.CrossRefGoogle Scholar
Yener, H. (2015). Maximizing survival, growth and goal reaching under borrowing constraints. Quant. Finance 15, 20532065.CrossRefGoogle Scholar
Yener, H. (2020). Proportional reinsurance and investment in multiple risky assets under borrowing constraint. Scand. Actuarial J. 2020, 396418.CrossRefGoogle Scholar
Yi, B., Viens, F. G., Li, Z. F. and Zeng, Y. (2015). Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean–variance criteria. Scand. Actuarial J. 2015, 725751.CrossRefGoogle Scholar
Yuan, Y., Liang, Z. B. and Han, X. (2022). Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. J. Indian Manag. Optimization 18, 933967.CrossRefGoogle Scholar
Zeng, Y. and Li, Z. F. (2011). Optimal time-consistent investment and reinsurance policies for mean–variance insurers. Insurance Math. Econom. 49, 145154.CrossRefGoogle Scholar
Zhang, X., Meng, H. and Zeng, Y. (2016). Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no short selling. Insurance Math. Econom. 67, 125132.CrossRefGoogle Scholar
Zhang, X. and Siu, T. K. (2009). Optimal investment and reinsurance of an insurer with model uncertainty. Insurance Math. Econom. 45, 8188.CrossRefGoogle Scholar